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Influence Analysis on a Test Statistic

in Canonical Correlation Analysis!)

Kang-Mo Jung?
Abstract

We propose a method for detecting influential observations that have a large influence
on the likelihood ratio test statistic for the two sets of variables are uncorrelated with
one another. For this purpose we derive a local influence measure for the likelihood ratio
test statistic under certain perturbation scheme. An illustrative example is given to show
the effectiveness of the proposed method on the identification of influential observations.

Keywords : Canonical correlation analysis, influential observations, local influence.

1. Introduction

The detection of outliers and influential observations has a long history. However, many
diagnostic measures have been proposed for influence analyses in the context of estimation. A
few works that treat detection of influential observations for test statistics in multivariate
analysis are found. Among others, Jung and Kim (1999) investigated the influence of
observations on the likelihood ratio test (LRT) statistics in the multivariate Behrens-Fisher
problem based on influence curves. Influence analysis in testing problems is very important
because in extreme situations, few observations can dominate our conclusion about the
hypothesis as can be seen in Section 5.

The LRT statistic in the canonical correlation analysis contains the canonical correlation
coefficients which can be obtained by the eigenvalues of the matrix composed of partitioned
covariance matrices. It is well known that the covariance matrix is very sensitive to influential
observations, and so is the LRT statistic. Case deletion diagnostics are widely used in many
statistical analyses (Cook and Weisberg, 1982). However, case deletion diagnostics require
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amount of computation time. The local influence method was inspired by Cook (1986) as a
general method of assessing the influence of perturbations of the model, and was adapted to
canonical correlation analysis by Jung (2000).

In this work the method of local influence is adapted to the LRT statistics for testing the
hypothesis that the two sets of variables are uncorrelated with one another, or the hypothesis
that some canonical correlation coefficients are not significant. Jung (2000) considered the
perturbation scheme which is free of distribution, because usually canonical correlation analysis
does not assume that the data is normally distributed. However, the LRT statistic for the testing
problems needs the normality. Therefore we considered the perturbation based on the normal
population. It is well known that the sample covariance matrix is more sensitive to influential
observations than the sample mean vector. Thus, for getting a local influence measure the
perturbation is chosen in which a weight is put on the covariance matrix for an observation.
Under this perturbation scheme, the parameters of interest are estimated. Then the perturbation
vector and the perturbed estimator form a surface in a certain Euclidean space. We use the slope
maximizing the slope vector of the surface for investigating the influence of observations on the
LRT statistics.

Section 2 discusses the preliminaries for canonical correlation analysis. We described the local
influence procedure and derivation on the LRT statistics in Sections 3 and 4, respectively. In
Section 5, a numerical example is given and it will show that the local influence method is
effective. )

2. LRT Statistic in Canonical Correlation Analysis

Suppose that x and y are p and ¢ dimensional random vectors, respectively. Suppose

further that x and y have means g, and p,, respectively, and that
E[(x— Il1)( x— 111)T]= 2, E[l(y— I‘z)( y— I‘z)T]= Xy,
E[(x— p)(y= p)T)= Zp= 3,7 .

T . . .
Then the random vector z=/( xT, y )T has the covariance matrix 3, where JX is
partitioned such that

Z‘=( Zn 212)_
Za 2p

The squared canonical correlation coefficient p? for i=1,,7, and r=min(p,q) are the

positive roots of the generalized eigenvalue problem

| S Zn ' Zu—et Zyl=0,
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with pf)m)p% and p,2~=0 if j>» For i=1,--, r the canonical vectors a; and B8, satisfy
the following equations
-1
(Zy Zpn Zp—0iZna= 0,
-1
(Zn Zu  Zp—0:3Zx) B =0,
with the normalized constraints
T T
a, Xy, a;= B, Iy 3;'=5fj s

where ¢ is the Kronecker delta.

Consider the hypothesis
Hy: Zp=0, (D
which means the two sets of variables are uncorrelated with one another. Under the normality,
the LRT statistic for testing H; is given by

T=—{n—(p+q+3)/2}og J:[l(l— 09, 2

where # is the number of observations, it can be obtained by using Bartlett’s approximation,

and it is approximately distributed as a chi-squared distribution with pg degrees of freedom
(Mardia, et al., 1979, p. 288).

Note that Bartlett proposed a similar statistic to test the hypothesis that only m of the
population canonical correlation coefficients are non-zero. This test is based on the statistic

—(n=(p+a+3)/2Mog I 1- 3

and it is asymptotically chi-squared distributed with (p— m)(g— m) degrees of freedom.
(Mardia, et al., 1979, p. 289).

3. Local Influence

Let 7 be a statistic and denote by { w) the perturbed statistic under a perturbation scheme
which can be characterized by a perturbation vector w= (w;, ", w,)”. The perturbation vector

is expressed as w,=1+al, for u=1,---,n. The scalar a represents the magnitude of the
perturbation and the vector /= (/;, -, 1,) Tof unit length its direction. The perturbation scheme

is chosen such that 7= 1{ ), where w; is called the null point.

The (n+1) by 1 vector ( wT,r( w))T forms a surface in the (#+ 1)-dimensional
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Euclidean space as w varies over a certain space. The direction vector [, maximizes the

slope of the surface at w= w; and gives influence information on the statistic (Lawrance,

1988). The maximum vector can be obtained by

low=1V 77,
T
where 'T=( iai[ulwl 2 igw_u& ) . Unlike Cook’s likelihood displacement,
w= w, n w= w,

in this case [, does not vanish, so it provides valuable information about the local behaviour

of o w).

To get a local influence measure on the LRT (2), we will derive the first order partial

derivatives of 7(w) evaluated at the null point under a perturbation scheme, which is given by
T(w) == (n—(p+a+3)/2}og [1(1— X w)) @)

where ?J,-( w) is the perturbed canonical correlation coefficient. For investigating the influence

of observations on the LRT (2), it is enough to get the first order partial derivatives of 0;( w).

4. Derivation

We consider a perturbation which the wuth observation =z, is perturbed according to
z,~N(g, Zlw,) , (4)
for u=1,"-,n. When w,=1 for all %, the perturbed model (4) reduces to the unperturbed

model, that is the null point w; becomes 1,, where 1,=(1,,1)7 of order #. The

maximum likelihood estimators for the mean vector and covariance matrix under the perturbed
model are given by

2(w) = ;;lwu 2,/ vglwv,
S(w) = B wd 2.~ B 2.~ %(w) . ®

Such perturbation was termed the case-weights perturbation scheme by Cook (1986).

Under the perturbation in equation (4), the estimators 0,{ w), /(\l,-( w) and ’B,v( w) satisfy
| Q(w)— % (w) Sy (w)=0 (6)

where Q(w)= Sp(w) Sx “(w) Sy (w) and S ;(w) is the estimator of X ; under
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the perturbation in equation (4) for #,7=1,2. Here, the ordering of ?),-z(w) is determined by

~2 ~ 2
o (1)= p/.

To get the first order partial derivatives of ?J,-z( w), from equation (6) we should get the

partial derivatives of generalized eigenvalues. We considered a generalized eigenvalue problem
such as

A y=24,Bu7, i=1,...,k
where A is a kX k symmetric matrix, B is a kX k positive-definite symmetric matrix and
y; is the eigenvector associated with the ith eigenvalue A, normalized to satisfy
7,-T B y,=3 ;. Assume that the eigenvalue are all distinct with A,>---> A,. Let A (w) and
B(w) be the perturbed matrices by the perturbation vector w. Also A( wy)= A and
B( wy)= B. Then a generalized eigenvalue problem for the perturbed matrices A{(w) and
B(w) can be written as
A(w) 7i(w)= A,(w) B(w) 7,(w), i=1,....k (7)
and the normalized constraint is inherited as 7;T( w) B(w) y;(w)=27J,; . Assume that
A(w), B w),A{w) and 7,(w) are differentiable at w= wy,. Differentiating equation (7)
with respect to w, evaluated at the null point vields
A, vi+ A 7iw=R;,uB 7,¥4:; B, 7:+A,;B 7, ,
where the subscript % denotes the partial differentiation with respect to w, evaluated at the null
point. Then by left-multiplying 7,-T to above equation gives
A= 7;‘T( A,—4;B) 7.
See Jung (2000) for details. From (6) we have the partial derivatives of /biz(w) such as

A~ 2 3 pi(w ~ T ~ 2 ~
Piu = dw = a; ( @r.— 0 Su.) a;, @)

since the generalized eigenvector of (6) is ;.

-1/2 -1/2

Let K= S, S S» . The singular value decomposition gives

K=(a,..., a,) DCb,... b,) T where a; and b; are the standardized eigenvectors of
K K™ and KT K, respectively, and D= diag(d>,...,d% for d° is the eigenvalues of

K K" and K"K Thus we have a;= S, @, b= Sy Biand df = /.
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Some algebra yields
Sp | Sy ai=0; B for i=1,...,7. (9)
Differentiating (5) with respect to w, gives S,=[( z,— ;)( 2,— ;)T]/ n. Thus we obtain
Siu.=(x,— %) x,— x)7/n and other S ;. are similarly defined according to i, for
5,j=1,2. From the identity S» 1 w) Sp(w)y=1 we have
Szz,u_l = - Szz‘l S Szz_l. Thus we obtain
Q.= Sp. Sz Su—Su Sz Sp. Sz Sut Su Sz ! Sau.
By putting @, and Sy, into (8) with (9) we obtain

~

2 ~ ~ 2 9 ~ 2
Ciu = —ln_[z o€ t'ufiu_ Oi €™ O fzzu];

AT - T — ) )
where en= @a; ( x,— %), fu= B: ( y,— y). Here e, and f; denote the ith pair
scores of x, and ¥, respectively.
From (4), we obtain the partial derivatives 07 w)/dw, evaluated at w= 1, as
oT( w) 1 ~ 2
= 121 [2 pz mfiu— O eziu— pt 1214]

aw“ w= 1,

1_ “[2C 2~ D7 B (v~ )

- pi( Xy x)T/&i /&i ( xu__x—)

- 2’1( yu_;)TB 31'7‘( yu—;)]r

o~ T T
where c=— {n—(p+q+3)/2}). Let P= 21 - pia @ & B | Then
p‘ Bi a; - P; ﬁi Bi
we have
T= %}ﬂ — diag( 2P 2D, (10)
w= 1,

-7
where Z= Z— 1, =z , because the constant ¢ can be cancelled out by normalization.

For testing the hypothesis that only m of the population canonical correlation coefficients are
non-zero, we may investigate the influence of observations on the test statistic based on the

local influence measure given by the #X1 vector

diag( Z P, ZT),

, ~ T T
__LIA_. - 0; a; a; a; B;

where P,, =
S 7 Y T S . A
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5. Numerical Example

The local influence method is applied to the head-length data (Mardia, et al, 1979, p. 121,
Table 5.1.1) previously analyzed by Romanazzi (1992) and Jung (2000). For this data set,
n=25, p=2, q=2. The two  sample canonical correlation  coefficients  are

?)12=0.6217, ?322=0.0029. Our analysis will be confined to the LRT statistic for the
hypothesis (1). The LRT statistic based on the full data set is 7T=20.96, and therefore we
conclude that the null hypothesis is strongly rejected by comparing %4 (0.05)=9.49, where

%*:(a) is the upper ath percentile of the x° distribution with k& degrees of freedom.

We obtain information about influential observations for the LRT statistic 7 using the local
influence method with the index plot of ., by (10). The index plot is presented in Fig. 1.

From this plot we may conclude that observations 16, 20 and 24 are candidate for influential
observations. And also we can observe that observation 16 is most influential.

0

.

.

°

Fig. 1 . The index plot for the LRT statistic 7 using the local influence method
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For a confirmatory analysis, we conduct the single and double case deletions, and the results
are summarized in Table 1. Numbers in Table 1 are arranged in decreasing order of |7~ T (5],
where T (;y denotes the test statistic after deletion of the corresponding index set J. The case
deletion results show that observations 16, 20 and 24 are individually influential and observations
20 and 24 with observation 16 are jointly influential, which are reflected in Fig. 1. Furthermore,

T (16.20.24y=8.71 gives that the null hypothesis is not rejected. It implies that opposite
conclusions are made by removing observations 16, 20, 24 or not. We conclude that observations
16, 20 and 24 are influential observations on the LRT statistic, and observation 16 is most
influential.

This example shows that the local influence method for detecting influential observations in
testing the uncorrelatedness between groups of variables, based on the canonical correlation
coefficients, is very informative, in that it gives much information about individually and jointly
influential observations. Confirmatory analysis using the case deletion method could be a giant
time—consuming job. Therefore, the local influence method is efficient in detecting influential

observations.

Table 1 : Single and double case deletions results for the LRT statistic T

J T ;) T—T J T T—-T
16 14.99 598 16, 20 11.61 9.35
24 18.04 293 16, 24 11.97 899
20 18.27 2.69 5, 16 12.81 8.16
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