SREAAT ATH 22
1994 94 pp. 299-311

Detection of Local Structural Changes in Time Seriesl)

Jae June Lee?
Abstract

In time series data, atypical observations are not rare. Several approaches
have been proposed to detect a single outlier, but the effectiveness of those
procedures is in doubt when patchy outliers are present. In this paper, the
atypicality in patchy outliers is interpreted as a local structural change, and a
model is introduced to entertain its effect on the series. Based on this model, a
statistic and a procedure are proposed for identifying those local structural
changes. The performance of the proposed procedure is evaluated through
simulation study and the analysis of real data sets.

1. Introduction

Atypical observations are commonly encountered in statistical data analysis. The presence
of those extraordinary events could easily mislead the conventional data analysis procedure
into erroneous conclusions. Therefore, identifying and handling those observations are
essential to enhance the accuracy of the statistical analysis. In the case of independent
observations, one usually deletes a single observation at a time and computes various
diagnostic statistics. However, the time series situation differs from the case of independent
observations, especially because a certain structure between observations is imposed by
time ordering, and atypical observations often come in the form of a patch or local
structural changes extending over observations in sequence. In this article, a model is
introduced to characterize atypical patch of observations in a time series and a procedure is
proposed to detect them.

Suppose that a time series X follows an autoregressive moving average
[ARMA(p,q)] model,

®(B)X;=3+0(B) g, (1.1

where ®(B) =1-®,B- ~ -%,B” and 6(B) =1-8,B- ~ -8,B? are polynomials in B of
degrees of p and g, respectively, B is the backshift operator such that BX:= X;-1, and

{ ;) is a sequence of independent Gaussian variates, called innovations, with mean zero and
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variance 0%, In model (1.1), it is assumed that all of the zeros of ®(B) and 8(B) are

outside the unit circle and that #(B) and 0(B) have no common factors.
Atypical observations are usually referred to as outliers in time series. A realization of
(1.1) with outliers, Y, can be written in parametric form:

Yt=f(t)+Xt, 1.2
where f(t), deterministic or stochastic, is a generating mechanism of outliers. In this
paper, f(¢) is called outlier effect. In model (1.2), Y is the observed series of X:, possibly

contaminated by outlier effects.

Several approaches have been proposed in the literature for handling outliers in time
series. Fox(1972), Chang(1982), Chang, Tiao, and Chen(1988), and Tsay(1986, 1988)
employed various versions of model (1.2) to describe the generating mechanism of an
outlier. The intervention model of Box and Tiao(1975) has been used to characterize f(t).
Additive outlier (AO) and innovational outlier (I0) are intensively studied in their works.
Martin(1981) and Kunsch(1984) proposed a robust approach for parameter estimation. In
addition, Martin and Yohai(1986) introduced influence functionals in the context of time
series. Bruce and Martin(1989), Pena(1990}, and Ledolter(1990) proposed deletion diagnostics
in time series context. In all of these approaches, the correct model form of outlier-free
series X in (1.1) is assumed known.

The procedures by Chang(1982) and Tsay(1986) seem to be most prominent in detecting
a single AO or I0. Meanwhile, their methods often fail to work correctly when multiple
outliers or patchy outliers are present (Chang et al., 1988 and Lee, 1990). If some structure
of outlier effects wasn’t included in the set of outlier types considered, their iterative
procedures would either disregard the outlier effects or identify one of the pre-setted types
which is the most closest. Besides AO and IO various forms of outlier types could be
introduced, but it is impractical because of the work load and computational burden in the
stages of the identification of outlier type and estimation of parameters.

The paper is organized as follows. The motivation and procedure, including the model,
estimation, and a detection criterion, are given in Section 2. In Section 3, the performance
of the proposed procedure is investigated by simulation study and the analysis of the
SERIES A data given in Box and Jenkins (1976). In Section 4, the application of the
procedure to the data set with multiple outliers is discussed and the annual spirits
consumption data of the United Kingdom is analyzed.

2. A Procedure for Detecting Local Structural Changes

A new interpretation of modelling outlier effects is introduced and a model with minimum
structure is proposed to entertain various types of outliers, namely local structural changes.
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Lee(1990) introduced this idea and proposed an outlier detection procedure which can be
applied to AR model. In this section, the procedure is modified in parameter estimation and
cutoff criterion. Thereupon, the proposed procedure can be applied to ARMA model and
clear-cut outlier detection can be achieved.

2.1 The Model

Suppose that a time series Y: follows MA(1) model with no constant term, but
contaminated by an 1O at time 7T, with magnitude 6. Then, Y: can be expressed as
Yi=Xe+0-P(Ty)-0-0-P(To+1),
where P:(To) =1 if t=To, and = 0 otherwise. Here, we note AO type outliers at time
To and 7o + 1, with magnitudes ® and -0, respectively. For a time series Y; of

AR(1) model with IO effect at Ty, it can be shown that Y, = X, + Zomqnf P(To+j)
=

where © is replaced by n - Ty for finite series. Since ¢ die out exponentially as j
k-1l

increase, Y. can be approximated by Y;= X, + z(:) 0¥ P.(To+j) for some k. Based on
=

these examples, it can be noted that any local structural change can be approximated by
modeling AO effects at consecutive time points.
The model we propose for a time series with any local structural changes is:

k-1
Ye= X, + ]ZO 0;7o(k) Pe(To +5), 2.1

where @j7,(k), called impact parameters, is the magnitude of outlier effect in Y 15+j. The
T, J, and k indicate the starting position of the local structural change, the position in the
patch, and the length of the patch, respectively. From now on, we shall use ©;(k) for

@;7,(k) unless it causes confusion.
2.2 Estimation

For the estimation of @=(wo(k),...,0k-1(k)), consider the residuals e; computed by

fitting Y into the model of X, When parameters B=(®,8)° T,, and k are known, e; can

be expressed as a multiple linear regression equation

e; =n(B)Y,
= 0ok xor + 01 (K X1+ - + 01 (k) Xu-16+ €4+ 8/(1 -0 — -08y),

where n(B) =9%(B)/6(B) and xj: = T(B)P(To+j) = “ e+, J=0,1, -, k-1. Here

(2.2)
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x;: is not a realization of X, but is used to denote the independent variable of regression
equation. The convention T; =0 for i <0 and 7o = -1 are used. For the finite series of

size n, an explicit expression can be written by

Z = X(k)o(k) + &, (2.3)
where
0 0 0
: : wolk)
1 0 0 a1(k)
X(k)=| -m 1 0 ,  alk) = :
—T3 -m 0 @e-1(k)
“Mn-To “Nn-Te-1 = ~Mn-To-k+1
and the j-th element of (nXx1) vector Z is e;-3/(1-8;- - -8;). Note that the To

~th row has one in the first column of X(k). By least squares estimation,
8 = [ X' X' X(K'Z and Cov(B(K)) = [X(K XU o’ It is well known
that the (k) follows a multivariate normal distribution with mean vector E[ @ (k)] and
covariance matrix Cov[ @ (k) 1, under the Gaussian assumption on { &; }.

In practice, the true parameters B are usually unknown, but they can be replaced by
some consistent estimates. When outliers are present in a time series, consistency of
parameter estimates wouldn’t be guaranteed. Pretending those suspicious observations as
missing, any missing data algorithm which can provide the consistency of model parameters
may be used. In this approach, the model parameters and impact parameters could be
estimated recursively. The EM algorithm may be used, but almost impractical because of
computational burden. To reduce computation time, the Yule-Walker (Y-W) type estimator
can be used. For a time series with missing data, Dunsmuir and Robinson(1981) showed
the consistency and asymptotic normality of the Y-W estimates for AR models.

23 A Criterion and A Procedure

For detecting the existence of outlier effects at the time points between 7o and
To+k -1, consider a statistic M(k,7To) defined by

Mk, To) = 8K [ XK X(K)]B (k) /0 (2.4)
where To and k signify the starting time point and the length of patch, respectively. From

the distributional property of ©(k), A(k,To) under Ho (no outlier effects at the times

between To and To+k-1) follows 1% distribution with k degrees of freedom(df).
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Meanwhile, the X(k,T,), under Hi, has a non-central x° distribution with k df and
non-centrality parameter defined by o= E[ (k)] Cov[ 6(k)1 " E[ 8(k)1/2. We note
that the outlier effects estimated by @ are summarized into d.

Since we test the existence of outlying patch, we should check every time point ¢ for
t=1,2,,n. Therefore, the statistic Max:(k) = Max; (k,t) may be employed as a
diagnostic for the detection of local structural changes in each iteration k. For a fixed k,
the value of statistic Max X (k), say A(k,70) can be compared with a certain percentile
of x%. Since the statistic of Chang to test a single AO effect is m, the cutoff
values which Chang suggested may lead to a reasonable criterion for A (k,7o). The
p-values corresponding to C = 3.0, 35, and 40 of Chang’s Criteria are 0.0027( C}), 0.0005
( C2), and 0.0001( C3), respectively.

Meanwhile, direct use of the criteria can cause some problem in the iteration process for

k > 1. For example, consider a time series with AO at ¢ = T,. For k=1, only A(1,7Ty)
would be significant. When the effect of AO is highly significant, both A (2,79-1) and
*(2,Ty) could be significant and have nearly the same values. Thus, correct determination
of k and To wouldn’t be obtained. Therefc=, for k > 1,

DMax (k) = Max, (M (k,t) - (k=-1,t)) (2.5)
is compared with the quantiles of 1% distribution, and 1% (0.0015) = 100 is
recommended, based on simulation study. As a rough cutoff criterion, (Y, =, Y rer-1)
could be decided as patch outliers at k-th iteration if

D Mk, To) = Max, Mk,t),
i) (Y4, ,Y ro-x-2) were patch outliers at (k-1)-th iteration, (2.6)
i) DMaxk(k) =X(k,To) - M k-1,To) > 10.

A procedure for the detection of outlying patch is summarized as follows:

step 1. Compute A (1,t), t=1,2,,n. And choose the time point 7¢ where A(1,f) is
maximized. Compare A(1,7T0o) with the quantiles of x?;.

step 2. Compute A(k,t), t=1,2,~,n for increasing k(> 1) untl no data points
satisfies the conditions(2.6).

step 3. The 7o and k are determined by the last iteration where the conditions were
satisfied in step 2.



304 Jae June Lee

3. Numerical Examples
3.1 A Simulation Study

The proposed procedure is designed to detect the existence and the positions of outliers
in sequence. To assess the performance of the procedure, the probability of correctly
detecting the locations and the number of outliers is concermed. In this study, we focus on
the issues of (a) no outlier, single, 2 consecutive AQs, (b) time series structure of Y, and
(c) three cutoff criteria.

For the simulation we geneated data from AR(1) and MA(1), with sample size n=100. All
the procedures are repeated 500 times. We used GGNML in IMSL to generate the normal
random numbers with mean 0 and variance 1 using SUN SPARC II. In our study we
considered three cases: no-outlier, a single AO at t=b0, and two AQOs at t=50 and 51 for
each model. The magnitudes of outlier effects considered are 56. In the stage of parameter
estimation, the backcasting method has been used. The percentage of right decision and the
mean and YMSE of Max Mk) of simulation results for three cases are reported in Table
3.1-3.3, respectively. From Tables 3.1-3.3, the followings can be observed:

(1) The three cutoff criteria were proposed in Section 2.3. As shown in Table 3.1, the
percentages of right decisions(no outliers) are relatively low for the criterion Ci. For C;
criterion, approximately 90% for AR(1) model and relatively higher percentages for MA(1)
model can be observed. For (3 criterion, the percentages of right decisions are even
higher(greater than 95%) then the results of Ca. It can be noted that the percentages are
nearly consistent for AR(1) model, but the percentage increases as 8 increases for MA(1)
model. Since no outlier effect is imposed in the series, each value is the probability of type
1 error. Based on the result of Table 3.1, from now on the criterion Ci is excluded in this

study.
(2) The result of simulation for a single AO case is given in Table 3.2. For AR(1)

model, the percentage of right decision is approximately 95% when the C; criterion is
applied. The results are almost the same when C3 is used, except ¢=0.2. Based on these
results, the power of correct decision for AR(1) model would be about 95%. For MA(1)
model, the powers are lower than those of AR(1) model, especially for higher 8 values. In
many cases, detection of t=49 or 50 at k=2, or no detection but maximum ’(1,50) are
observed, which haven’t been counted in the percentage.

(3) The result of simulation for two AOs at t=50 and 51 is shown in Table 3.3. For
AR(1) model, the percentage is approximately 95% for criterion C; and Cs, respectively.
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For MA(1) model, the powers are about 9% for 0=02, 93% for 6=05, and 74% for 0=0.8.
Further looking into the case of 8=0.8 showed that t=50 or 51 at k=1 was detected in

many cases.

Table 3.1 Simulation Results for NO Outlier Series
(a): AR(1) with No Outlier

C1 C2 C3
0 % Mean YMSE | % Mean YMSE % Mean YMSE
0.2 625 725 1.06 88 814 168 9.6 849 2.09
0.5 637 714 1.11 910 804 173 982 842 2.16
0.8 650 698 1.18 907 787 178 985 830 2.16
(b): MA(1) with No Outlier
Cl C2 C3
¢ % Mean YMSE | % Mean YMSE % Mean YMSE
0.2 673 699 1.11 | 907 781 1.74 969 8156 2.14
05 872 593 147 | 976 6.37 1.90 96 650 2.11
0.8 96.2 4.60 172 | 997 478 1.94 100. 481 1.99
Table 3.2 Simulation Results for Single AO Series
(a): AR(1) with AO at t=50
C2 C3
¢ % Mean YVMSE | % Mean VMSE
0.2 954 2991 1203 | 88 3092 1169
05 96.2 3458 1328 | 40 3H07 1303
0.8 042 4380 1534 | Y42 4380 1534
(b): MA(1) with AO at t=50
Cc2 C3
0 % Mean VMSE | % Mean VMSE
0.2 936 3112 1265 852 3199 1232
05 832 3736 1728 812 3793 17.09
0.8 686 3770 1866 67.2 3820 1853
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Table 3.3 Simulation Results for Two AOs Series
(a): AR(1) with AOs at t=50, 51

C2 C3
¢ % Mean YMSE | % Mean YMSE
0.2 936 4890 16.36 936 4890 16.36
0.5 938 4411 1484 938 4411 1484
08 940 4763 1604 940 4763 16.04

(b): MA(1} with AOs at t=50, 51

C2 C3
o % Mean YMSE | % Mean YMSE
0.2 394 7381 2665 |94 7381 2565
0.5 932 1427 3454 | 932 1427 3454
0.8 742 1576 1420 | 742 1576 1420

(4) In geneal, the criterion Cz works reasonable well for each cases of AR(1) model, but

the power decreases significantly as 0 increases for MA(1) model. We may note that the
consistency of Y-W estimates when missing data are present is shown for AR model, see
Dusmuir and Robinson(1981).

(5) Though not reported in this paper, simulation study for single IO at t=50 has been
done for few cases. For example, when =05 for AR(1) model, the result of 1000
replications with (2 criterion showed that 597 and 264 correct decisions for k=1 and 2,
respectively. As expected, about 60% of outlier at t=50 and 26% at t=50 and 51 have been
observed.

3.2 Series A data

The Series A data(n= 197) analyzed by Box and Jenkins(1976) is considered. The ARMA
(1,1) was identified by them and used in this analysis. Time series plot is given in Figure
3.1 and the estimated values of A(kt) for k=1 are given in Figure 3.2. From the analysis
of Chang’s procedure, two data points are detected as outliers, AO at time point 43 and 10
at 64.
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Figure 3.1 Time Series Plot of Series A Data

Two iterations have been performed. As shown in Figure 3.2, clear peaks at time points
43 and 64 have been observed. For k=2, no data point has significant diagnostic value, and
thus iteration was stopped. Compared with the cutoffs for k=1, the observations at t=43 and
64 are detected as single AOs. The result of analysis is slightly different from that of
Chang’s.
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Figure 3.2 Series A Data: Lambda values at k=1
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4. Discussion

4.1 Multiple QOutlying Patches.

Multiple outliers are not rare in time series data analysis. The presence of multiple
outliers can easily lead to masking effects, and thus the effectiveness of dectection
measures is generally in doubt. By replacing suspicious observations by reasonable
estimates, masking effects could be reduced. We, therefore, propose a procedure to detect
multiple outlying patches as follows:

(1). using the proposed procedure, determine the most significant patch of observations

(2). replace all observations in the patch by Y. - @(k).
(3). repeat (1) and (2) until no significant patch is detected

Example 4.1: England Spirit Data

We analyze the data of annual consumption of spirits in the United Kingdom from 1870
to 1938. The data set was analyzed by Fuller(1976) and Tsay(1986). The observations are
the residual series after fitting the time series regression model. The ARMA(,1) model
was identified by them and used in this analysis. Time series plot is given in Figure 4.1.
The replacement approach has been adopted to identify multiple outlying patches. The result
of iterations is summarized in Table 4.1.

At first iteration, the time point 49 was detected and the estimated w, -0.062, was

subtracted from Y. At the second iteration, Y4 was selected for elimination of outlier
effect as single AO. The Y4 was modified by subtracting estimated w= 0.0485. At third

iteration, the time points 40 and 41 have been detected with estimated @ of -0.0753 and
-0.0384 at k= 2. No significant outlier has been detected at iteration 4.

Table 4.1: Analysis of England Spirit Data

iteration k A (k,40) A (k,46) A (k,49)
1 1 14.90 13.60 25.10
2 1 19.60 21.30 0.00
3 2 58.40 3.06 0.14
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Figure 4.1 Time Series Plot of UK. Spirit Data

4.2 Comments

It is well known that outliers can lead to model mis—-identification in time series (Lee,
1990). If the positions of outliers are known and part of the data with no outlier effects is
long enough, we may identify a model and estimate its parameters from it. If a time series
is not long enough and the position of outliers are unknown, no known method is available
at this time. Some robust model identification methods may need to be developed.

In Section 2, application of a missing data algorithm is recommended to get more
accurate estimates of model parameters. Though several approaches to entertain missing
data are available, e.g. the predicted estimators(Harvey and Pierce, 1984), the interpolated
estimators(Pourahmadi, 1989), and the Yule-Walker type estimators(Dunsmuir and Robinson,
1981), application of each algorithm to the proposed outlier dectection procedure would result
in almost same conclusion in general. Furthermore, the need of missing data algorithms
seems not so critical provided a sufficiently long observed series is available, for the
detection of outliers.
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