• Title/Summary/Keyword: Lithium sulfate

Search Result 31, Processing Time 0.025 seconds

A study on the reaction of carbonation in the preparation of lithium carbonate powders (탄산리튬 분말 제조에 있어서 탄산화 반응에 관한 연구)

  • Yang, Jae-Kyo;Jin, Yun-Ho;Yang, Dae-Hoon;Kim, Dae-Weon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • In this study, we carried out the experiment to prepare lithium carbonate powder through gas-liquid reactions with a lithium-containing solution and $CO_2$ gas using lithium hydroxide, lithium chloride, and lithium sulfate. Thermodynamically, the carbonation reaction of a lithium-containing solution showed that aqueous reaction of lithium hydroxide occurs spontaneously, but aqueous reactions of lithium chloride and lithium sulfate does not occur spontaneously. In the case of lithium hydroxide solution, the recovery rate of lithium carbonate was 69.8 % at room temperature ($25^{\circ}C$), and increased to 89.4 % at $60^{\circ}C$. In the case of lithium chloride and lithium sulfate solution, lithium carbonate could be prepared using sodium hydroxide as an additive, but the recovery rates were 19.2 % and 16.7 %, respectively.

The Separation and Recovery of Nickel and Lithium from the Sulfate Leach Liquor of Spent Lithium Ion Batteries using PC-88A

  • Nguyen, Viet Tu;Lee, Jae-Chun;Jeong, Jinki;Kim, Byung-Su;Pandey, B.D.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • The present paper deals with the extractive separation and selective recovery of nickel and lithium from the sulfate leachate of cathode scrap generated during the manufacture of LIBs. The conditions for extraction, scrubbing and stripping of nickel from lithium were optimized with an aqueous feed containing $2.54kg{\cdot}m^{-3}$ Ni and $4.82kg{\cdot}m^{-3}$ Li using PC-88A. Over 99.6% nickel was extracted with $0.15kmol{\cdot}m^{-3}$ PC-88A in two counter-current stages at O/A=1 and pH=6.5. Effective scrubbing Li from loaded organic was systematically studied with a dilute $Na_2CO_3$ solution ($0.10kmol{\cdot}m^{-3}$). The McCabe-Thiele diagram suggests two counter-current scrubbing stages are required at O/A=2/3 to yield lithium-scrubbing efficiency of 99.6%. The proposed process showed advantages of simplicity, and high purity (99.9%) nickel sulfate recovery along with lithium to ensure the complete recycling of the waste from LIBs manufacturing process.

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate (배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로)

  • Inhye Roh;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes

  • Kamenskii, Mikhail A.;Eliseeva, Svetlana N.;Volkov, Alexey I.;Kondratiev, Veniamin V.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.177-185
    • /
    • 2022
  • Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.

A Study on Concentration and Application Time of Lithium Sulfate-Contained Polyacrylic Acid for Adequate Crystal Growth (법랑질 표면에 크리스탈을 형성시키기 위해 사용한 황산리튬이 함유된 폴리아크릴산의 농도와 적용시간에 관한 연구)

  • Roh, Joung-Sub;Kim, Sang-Cheol;Tae, Ki-Chul
    • The korean journal of orthodontics
    • /
    • v.28 no.6 s.71
    • /
    • pp.947-954
    • /
    • 1998
  • The purpose of this study was to compare shear bonding strengths and debonding patterns of the ceramic brackets attached on the crystal which were grown on the enamel surface of a tooth with different concentrations of lithium sulphate-contained polyacrylic acid in different application times. Four kinds of concentrations of mixed solutions were made and applied to the enamel surface on extracted human premolars. The solutions were made by adding 0.3M or 0.6M of lithium sulfate to $50\%\;or\;65\%$ of polyacrylic acid with 0.3M sulfuric acid. The solutions were applied for 30 or 60 seconds. After bonding, a universal testing machine was used to measure the shear bond strength, and then observations were made of debonding patterns through the stereoscope. And the enamel surface was observed through the scanning electron microscope to examine the pattern of crystal growth and debonding. The results were as follows: 1. Shear bond strength in the enamel surface treated with $50\%$ polyacrylic acid was higher than that with $65\%$ polyacrylic acid. 2. There were no statistical differences in shear bond strength according to concentration of lithium sulfate and application time of solutions . 3. Enamel surface was almost free of resin debris after debonding. 4. Enamel surface treated with $50\%$ polyacrylic acid showed higher density of crystal growth than that with $65\%$ polyacrylic acid under scanning electron microscope.

  • PDF

A Comparison of shear Bonding Strength with Polyacrylic acid and Phosphoric acid Enamel Surface Conditioning (폴리아크릴산과 인산으로 법랑질표면 처리후 전단결합강도의 비교)

  • Roh, Joung-Sub;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.32 no.1 s.90
    • /
    • pp.51-57
    • /
    • 2002
  • The purpose of this study was to compare in vitro shear bonding strength with three different enamel surface preparations (1) 30% sulfated polyacrylic acid with 0.3M lithium sulfate (2) 40% sulfated polyacrylic acid with 0.3M lithium sulfate (3) 37% phosphoric acid. 105 extracted human premolar teeth were divided into each three groups of 35. Metal brackets were bonded to teeth in the three groups. The same self curing resin was used for all groups. A shearing force was applied to the teeth. After debonding, bases of bracket and enamel surfaces were examined under steroscopic microscope to determine the failure modes. Statistical analysis of the data was carried out with one way ANOVA and Student t- test. The results were as follows. 1. Shear bond strength values for the 30% polyacrylic acid and 40% polyacrylic acid group were approximately two thirds of the phosphoric acid group. It maintains clinically acceptable but not enough bond strength. 2. There was no statistically significant difference in shear bond strengths between 30% and 40% polyacrylic acid group. 3. The failure modes of brackets had some differences. In polyacrylic acid groups, the percentage of adhesive/enamel failure was higher than that of adhesive/ bracket interface failure. On the contrary in phosphoric acid groups, the results were reversed. Further study of bond strength could be required. If polyacrylic acid enamel conditioning is used clinically.

Lithium Ion Battery Recycling Industry in South Korea (국내 리튬이온전지 재활용 산업현황)

  • Kyoungkeun Yoo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The objective of this article is to summarize the commercial lithium ion battery (LIB) recycling processes in Korea and to suggest new direction for LIB recycling. A representative LIB recycler, SungEel Hitech Co. has successfully operated the LIB recycling process for over 10 years, and new recycling processes were recently proposed or developed by many recycling companies and battery manufacturers. In the new recycling processes, lithium is recovered before nickel and cobalt due to the rapid rise in lithium prices, and metal sulfate solution as final product of recycling process can be supplied to manufacturers. The main problem that the new recycling process will face is impurities, which will mainly come from end-of-life electric vehicles or new additives in LIB, although the conventional processes must be improved for mass processing.

Effect of Suppository Bases on Absorption of Lithium Carbonate (좌제기제가 탄산리튬의 흡수에 미치는 영향)

  • Kim, Yong-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.4
    • /
    • pp.148-151
    • /
    • 1986
  • This paper was designed to investigate the influence of different suppository bases on both the rectal absorption and dissolution rate of lithium carbonate, and to compare bioavailability from rectal administration with that from oral administration. The dissolution rates were in such order as PEG 4000, surfactant A (Witepsol 15+sodium lauryl sulfate), surfactant B (Witepsol 15+cholic acid), Witepsol 15 and cacao butter. Among various suppository bases, the blood level of lithium carbonate after rectal administration was increased in the following order: surfactant A>surfactant B>PEG 4000>Witepsol 15>cacao butter. When it comes to compare oral with rectal administration in AUC values, surfactants and PEG 4000 showed similar blood levels to oral administration, but lipophilic bases such as Witepsol 15 and cacao butter showed far lower blood level than oral administration. Peak time in oral administration was 2 hrs, but those in rectal administration using various suppository bases were $6{\sim}8$ hrs.

  • PDF

Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material

  • Chae, Bum-Jin;Song, Hye Ji;Mun, Junyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 2020
  • Recently, layered nickel-rich cathode materials (NCM) have attracted considerable attention as advanced alternative cathode materials for use in lithium-ion batteries (LIBs). However, their inferior surface stability that gives rise to rapid fading of cycling performance is a significant drawback. This paper proposes a simple and convenient coating method that improves the surface stability of NCM using sulfate-based solvents that create artificial cathode-electrolyte interphases (CEI) on the NCM surface. SOx-based artificial CEI layer is successfully coated on the surface of the NCM through a wet-coating process that uses dimethyl sulfone (DMS) and dimethyl sulfoxide (DMSO) as liquid precursors. It is found that the SOx-based artificial CEI layer is well developed on the surface of NCM with a thickness of a few nanometers, and it does not degrade the layered structure of NCM. In cycling performance tests, cells with DMS- or DMSO-modified NCM811 cathodes exhibited improved specific capacity retention at room temperature as well as at high temperature (DMS-NCM811: 99.4%, DMSO-NCM811: 88.6%, and NCM811: 78.4%), as the SOx-based artificial CEI layer effectively suppresses undesired surface reactions such as electrolyte decomposition.