Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00829

Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material  

Chae, Bum-Jin (Department of Chemistry, Incheon National University)
Song, Hye Ji (Department of Chemistry, Incheon National University)
Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
Yim, Taeeun (Department of Chemistry, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.4, 2020 , pp. 361-367 More about this Journal
Abstract
Recently, layered nickel-rich cathode materials (NCM) have attracted considerable attention as advanced alternative cathode materials for use in lithium-ion batteries (LIBs). However, their inferior surface stability that gives rise to rapid fading of cycling performance is a significant drawback. This paper proposes a simple and convenient coating method that improves the surface stability of NCM using sulfate-based solvents that create artificial cathode-electrolyte interphases (CEI) on the NCM surface. SOx-based artificial CEI layer is successfully coated on the surface of the NCM through a wet-coating process that uses dimethyl sulfone (DMS) and dimethyl sulfoxide (DMSO) as liquid precursors. It is found that the SOx-based artificial CEI layer is well developed on the surface of NCM with a thickness of a few nanometers, and it does not degrade the layered structure of NCM. In cycling performance tests, cells with DMS- or DMSO-modified NCM811 cathodes exhibited improved specific capacity retention at room temperature as well as at high temperature (DMS-NCM811: 99.4%, DMSO-NCM811: 88.6%, and NCM811: 78.4%), as the SOx-based artificial CEI layer effectively suppresses undesired surface reactions such as electrolyte decomposition.
Keywords
Lithium Ion Battery; Ni-Rich Cathode; Cathode-Electrolyte Interphases; Surface Stability; Electrochemical Performance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 2013, 226, 272-288.   DOI
2 M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energy Environ. Sci. 2012, 5, 7854-7863.   DOI
3 E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, J. Power Sources 2007, 168(1), 2-11.   DOI
4 J. Zheng, W. H. Kan, A. Manthiram, ACS Appl. Mater. Interfaces 2015, 7(12), 6926-6934.   DOI
5 N. Yabuuchi, T. Ohzuku, J. Power Sources 2003, 119, 171-174.   DOI
6 S. Liu, L. Xiong, C. He, J. Power Sources 2014, 261, 285-291.   DOI
7 Y. Chung, H.-Y. Park, S.-H. Oh, D. Y. Yoon, S.-W. Jin, D.-Y. Jang, J. M. Ko, W. I. Cho, S.-R. Lee, J. Electroceramics, 2013, 31(3-4), 316-323.   DOI
8 K. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Cender, Science 2006, 311(5763), 977-980.
9 C. M. Julien, A. Mauger, K. Zaghib, H. Groult, Inorganics 2014, 2(1), 132-154.
10 D. D. MacNeil, Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2002, 149(10), A1332-A1336.   DOI
11 C.-C. Wang, A. Manthiram, J. Mater. Chem. A 2013, 1(35), 10209-10217.   DOI
12 J. Ahn, J. H. Kim, B. W. Cho, K. Y. Chung, S. Kim, J. W Choi, S. H. Oh, Nano Lett. 2017, 17(12), 7869-7877.   DOI
13 H. J. Song, S. H. Jang, J. Ahn, S. H. Oh, T. Yim, J. Power Sources 2019, 416, 1-8.   DOI
14 J.-Y. Hwang, C. S. Yoon, I. Belharouak, Y.-K. Sun, J. Mater. Chem. A 2016, 4(46), 17952-17959.   DOI
15 Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, K. Amine, Nat. Mater. 2012, 11(11), 942-947.   DOI
16 W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. 2015, 54(15), 4440-4457.   DOI
17 M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, D. T. Major, J. Phys. Chem. C 2017, 121(41), 22628-22636.   DOI
18 S. H. Jang, J. Mun, D.-K. Kang, T. Yim, J. Electrochem. Sci. Technol. 2017, 8(2), 162-168.   DOI
19 B.-J. Chae, T. Yim, J. Power Sources 2017, 360, 480-487.   DOI
20 S. H. Lim, W. Cho, Y.-J. Kim, T. Yim, J. Power Sources 2016, 336, 465-474.   DOI
21 B.-J. Chae, T. Yim, Mater. Chem. Phys. 2018, 214, 66-72.   DOI
22 B. Zhang, M. Metzger, S. Solchenbach, M. Payne, S. Meini, H. A. Gasteiger, A. Garsuch, B. L. Lucht, J. Phys. Chem. C 2015, 119(21), 11337-11348.   DOI
23 K. J. Nelson, J. Xia, J. R. Dahn. J. Electrochem. Soc. 2014, 161(12), A1884-A1889.   DOI
24 J. Pires, L. Timperman, A. Castets, J. S. Pena, E. Dumont, S. Levasseur, R. Dedryvere, M. Anouti, RSC Adv. 2015, 5(52), 42088-42094.   DOI
25 G. H. Wrodnigg, T. M. Wrodnigg, J. O. Besenhard, M. Winter, Electrochemistry Communications 1999, 1(3-4), 148-150.   DOI
26 G. H. Wrodnigg, J. O. Besenhard, M. Winter, J. Electrochem. Soc. 1999, 146(2), 470-472.   DOI
27 J. Xia, J. E. Harlow, R. Petibon, J. C. Burns, L. P. Chen, J. R. Dahn, J. Electrochem. Soc. 2014, 161(4), A547-A553.
28 J. Choi, A. Manthiram, Electrochem. Solid-State Lett. 2005, 8(8), C102-C105.   DOI
29 H.-J. Noh, S. Youn, C. S. Yoon, Y.-K. Sun, J. Power Sources 2013, 233, 121-130.   DOI
30 A. Calborean, F. Martin, D. Marconi, R. Turcu, I. E. Kacso, L. Buimaga-Iarinca, F. Graur, I. Turcu, PMater. Sci. Eng. C. 2015, 57, 171-180.   DOI
31 J. Baltrusaitis, D. M. Cwiertny, V. H. Grassian, Phys. Chem. Chem. Phys. 2007, 9(41), 5542-5554.   DOI
32 Z. Huang, Q. Lu, J. Wang, X. Chen, X. Mao, Z. He, PLoS One 2017, 12(8), e0183617.   DOI
33 J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai, J. Zhao, Phys. Chem. Chem. Phys. 2015, 17(47), 32033-32043.   DOI
34 D. R. Gallus, R. Schmitz, R. Wagner, B. Hoffmann, S. Nowak, I. Cekic-Laskovic, R. W. Schmitz, M. Winter, Electrochim. Acta 2014, 134, 393-398.   DOI