DOI QR코드

DOI QR Code

A study on the reaction of carbonation in the preparation of lithium carbonate powders

탄산리튬 분말 제조에 있어서 탄산화 반응에 관한 연구

  • Yang, Jae-Kyo (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Jin, Yun-Ho (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Yang, Dae-Hoon (GM-Tech) ;
  • Kim, Dae-Weon (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • 양재교 (고등기술연구원 신소재공정센터) ;
  • 진연호 (고등기술연구원 신소재공정센터) ;
  • 양대훈 ((주)지엠텍) ;
  • 김대원 (고등기술연구원 신소재공정센터)
  • Received : 2019.09.30
  • Accepted : 2019.10.11
  • Published : 2019.10.31

Abstract

In this study, we carried out the experiment to prepare lithium carbonate powder through gas-liquid reactions with a lithium-containing solution and $CO_2$ gas using lithium hydroxide, lithium chloride, and lithium sulfate. Thermodynamically, the carbonation reaction of a lithium-containing solution showed that aqueous reaction of lithium hydroxide occurs spontaneously, but aqueous reactions of lithium chloride and lithium sulfate does not occur spontaneously. In the case of lithium hydroxide solution, the recovery rate of lithium carbonate was 69.8 % at room temperature ($25^{\circ}C$), and increased to 89.4 % at $60^{\circ}C$. In the case of lithium chloride and lithium sulfate solution, lithium carbonate could be prepared using sodium hydroxide as an additive, but the recovery rates were 19.2 % and 16.7 %, respectively.

본 연구는 수산화리튬, 염화리튬, 그리고 황산리튬을 이용한 리튬 함유 용액과 $CO_2$ 가스와의 기상-액상 반응을 통하여 탄산리튬 분말을 제조하는 실험을 실시하였다. 열역학적으로 리튬 함유 용액의 탄산화 반응에서 수산화리튬은 자발적으로 일어나지만, 염화리튬과 황산리튬은 비자발적이었다. 수산화리튬의 경우, $25^{\circ}C$의 반응온도에서 탄산리튬의 회수율이 69.8 %였으며, $60^{\circ}C$에서는 89.4 %로 증가하였다. 염화리튬과 황산리튬의 경우, 수산화나트륨을 첨가제로 사용하여 탄산리튬을 제조할 수 있었으나, 회수율은 각각 19.2 %와 16.7 %로 비효율적임을 알 수 있었다.

Keywords

References

  1. S. Kim, S. Cho and C. Nam, "Development of fine mineral processing technology for lithium and mica", Report of Ministry of Commerce Industry and Energy (2003) 12.
  2. U. Chon, G. Han, K. Kim and K.H. Kim, "Current status of lithium resources", J. Korean Inst. of Resources Recycling 19 (2010) 3.
  3. B. Kim, S. Kim and J. Lee, "Extraction of lithium from lepidolite through intensive grinding with calcium sulfate hemihydrate followed by water leaching", J. of Korean Inst. of Resources Recycling 26 (2017) 47. https://doi.org/10.7844/kirr.2017.26.3.47
  4. D.W. Kim and S.T. Jang, "Recovery of lithium and leaching behavior of NCM powder by carbon reductive treatment from $Li(NCM)O_2$ system secondary battery scraps", J. Korean Inst. of Resources Recycling 22 (2013) 62.
  5. D.W. Kim, S.T. Jang and K.M. Baek, "Recovery of lithium and leaching behavior of NCM powder by hydrogen reductive treatment from NCM system li-ion battery scraps", J. Korean Inst. of Resources Recycling 22 (2013) 43.
  6. B. Swain, "Cost effective recovery of lithium from lithium ion battery by reverse osmosis and precipitation: a perspective", J. Chem. Thechnol. Biotechnol. 93 (2018) 311. https://doi.org/10.1002/jctb.5332
  7. L. Li, V.G. Deshmane, M.P. Paranthaman, R. Bhave, B.A. Moyer and S. Harrison, "Lithium recovery from aqueous resources and batteries: a brief review", Johnson Matthey Technol. Rev. 62 (2018) 161. https://doi.org/10.1595/205651317X696676
  8. J.J. Lee and J.D. Chung, "A study on the cobalt and lithium recovery from the production scraps of lithium secondary battery by high efficient and eco-friendly method", J. of Korean Inst. of Resources Recycling 19 (2010) 51.
  9. V.T. Nguyen, J.C. Lee, J.K. Jeong, B.S. Kim and B.D. Pandey "The separation and recovery of nickel and lithium from the sulfate leach liquor of spent lithium ion batteries using PC-88A", Korean Chem. Eng. Res. 53 (2015) 137. https://doi.org/10.9713/kcer.2015.53.2.137
  10. W. Gao, X. Zhang, X. Zheng, X. Lin, H. Cao, Y. Zhang and Z.H.I. Sun, "Lithium carbonate recovery from cathode scrap of spent lithium-ion battery - a closed-loop process", Environ. Sci. Technol. 51 (2017) 1662. https://doi.org/10.1021/acs.est.6b03320
  11. L. Li, J. Ge, F. Wu, R. Chen, S. Chen and B. Wu, "Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant", J. Hazard. Mater. 176 (2010) 288. https://doi.org/10.1016/j.jhazmat.2009.11.026
  12. F. Leroux, C. Dessemond, G. Soucy and N. Laroche, "Impact of the impurities on lithium extraction from ${\beta}$-spodumene in the sulfuric acid process", Min. Eng. 129 (2018) 1. https://doi.org/10.1016/j.mineng.2018.09.011
  13. Y. Chen, Q. Tian, B. Chen, X. Shi and T. Liao, "Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process", Hydrometallurgy 109 (2011) 43. https://doi.org/10.1016/j.hydromet.2011.05.006
  14. G. Kuang, Y. Liu, H. Li, S. Xing, F. Li and H. Guo, "Extraction of lithium from ${\beta}$-spodumene using sodium sulfate solution", Hydrometallurgy 177 (2018) 49. https://doi.org/10.1016/j.hydromet.2018.02.015
  15. L. Medina, Fernando, E. Naggar and M. Mohamed, "An alternative method for the recovery of lithium from spodumene", Metal. Trans. B 15B:4 (1984) 725.
  16. L. Barbosa, G. Valente, R. Orosco and J. Gonzalez, "Lithium extraction from ${\beta}$-spodumene through chlorination with chlorine gas", Min. Eng. 56 (2014) 29. https://doi.org/10.1016/j.mineng.2013.10.026
  17. V.T. Luong, D.J. Kang, J.W. An, D.A. Dao, M.J. Kim and T. Tran, "Iron sulphate roasting for extraction of lithium from lepidolite", Hydrometallurgy 141 (2014) 8. https://doi.org/10.1016/j.hydromet.2013.09.016
  18. T.T. Hien-Dinh, V.T. Luong, R. Giere and T. Tran, "Extraction of lithium from lepidolite via iron sulphide roasting and water leaching", Hydrometallurgy 153 (2015) 154. https://doi.org/10.1016/j.hydromet.2015.03.002
  19. Q. Yan, X. Li, Z. Wang, X. Wu, J. Wang, H. Guo, Q. Hu and W. Peng, "Extraction of lithium from lepidolite by sulfation roasting and water leaching", Int. J. Min. Process, 11-111 (2012) 1. https://doi.org/10.1016/0301-7516(83)90042-X
  20. V.T. Luong, D.J. Kang, J.W. An, M.J. Kim and T. Tran, "Factors affecting the extraction of lithium from lepidolite", Hydrometallurgy 134-135 (2013) 54. https://doi.org/10.1016/j.hydromet.2013.01.015
  21. Q. Yan, X. Li, Z. Wang, J. Wang, H. Guo, Q. Hu, W. Peng and X. Wu, "Extraction of lithium from lepidolite using chlorination roasting-water leaching process", Trans. Nonferrous Met. Soc. China 22 (2012) 1753. https://doi.org/10.1016/S1003-6326(11)61383-6
  22. G.O.G. Lof and W.K. Lewis, "Lithium chloride from lepidolite", Ind. Eng. Chem. 34 (1942) 209. https://doi.org/10.1021/ie50386a014
  23. H. Guo, G. Kuang, H. Wan, Y. Yang, H. Yu and H. Wang, "Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method", Hydrometallurgy 183 (2019) 9. https://doi.org/10.1016/j.hydromet.2018.10.020
  24. O. Sitando and P.L. Crouse, "Processing of a zimbabwean petalite to obtain lithium carbonate", Int. J. Min. Process 102-103 (2012) 45. https://doi.org/10.1016/j.minpro.2011.09.014
  25. T.G. Maschler, B. Friedrich, R. Weyhe, H. Heegn and M. Rutz, "Development of a recycling process for Liion batteries", J. Power Sources 207 (2012) 173. https://doi.org/10.1016/j.jpowsour.2012.01.152
  26. D.W. Kim, J.R. Park, N.K. Ahn, G.M. Choi, Y.H. Jin and J.K. Yang, "A review on the recovery of the lithium carbonate powders from lithium containing substances", J. Korean Cryst. Growth Cryst. Technol. 29 (2019) 91. https://doi.org/10.6111/JKCGCT.2019.29.3.091
  27. S.H. Kim, "Preparation of lithium carbonate from lithium ion in aqueous solution", Master Thesis, Pukyong National University (2014).
  28. C. Zhao, Y. Zhang, H. Cao, X. Zheng, T.V. Gerven, Y. Hu and Z. Sun, "Lithium carbonate recovery from lithium-containing solution by ultrasound assisted precipitation", Ultrasonics Sonochemistry 52 (2019) 484. https://doi.org/10.1016/j.ultsonch.2018.12.025
  29. S.K. Park and K.S. Park, "A method of producing lithium carbonate using brine", Korea patent, 10-2012- 00014828 (2012).
  30. N. Chen, E. Zhou, D. Duan and X. Yan, "Mechanochemistry synthesis of high purity lithium carbonate", Korean J. Chem. Eng. 34 (2017) 2748. https://doi.org/10.1007/s11814-017-0172-4
  31. Y. Sun, X. Song, J. Wang and J. Yu, "Preparation of $Li_2CO_3$ by gas-liquid reactive crystallization of LiOH and $CO_2$", Cryst. Res. Technol. 47 (2012) 437. https://doi.org/10.1002/crat.201100571
  32. Y. Lu, Y. Liu, C. Zhou and G. Luo, "Preparation of $Li_2CO_3$ nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor", Ind. Eng. Chem. Res. 53 (2014) 11015. https://doi.org/10.1021/ie5019832
  33. Z. Zhou, F. Liang, W. Qin and W. Fei, "Coupled reaction and solvent extraction process to Form $Li_2CO_3$: mechanism and product characterization", AIChE J. 60 (2014) 282. https://doi.org/10.1002/aic.14243