Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00689

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes  

Kamenskii, Mikhail A. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.)
Eliseeva, Svetlana N. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.)
Volkov, Alexey I. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.)
Kondratiev, Veniamin V. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 177-185 More about this Journal
Abstract
Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.
Keywords
Lithium Manganese Spinel; Aqueous Electrolyte; Hybrid Zinc Battery; Electrochemical Performance; Energy Storage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Yan, J. Wang, H. Liu, Z. Bakenov, D. Gosselink and P. Chen, J. Power Sources, 2012, 216, 222-226.   DOI
2 H. Seki, K. Yoshima, Y. Yamashita, S. Matsuno and N. Takami, J. Power Sources, 2021, 482(6), 228950.   DOI
3 G. Yuan, J. Bai, T. N. L. Doan and P. Chen, Mater. Lett., 2014, 137, 311-314.   DOI
4 M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edstrom, C. Ekberg, D. Guyomard, B. Lestriez, P. Novak, M. Petranikova, W. Porcher, S. Trabesinger, M. Wohlfahrt-Mehrens and H. Zhang, J. Power Sources, 2020, 479(7), 228708.   DOI
5 P. K. Nayak, L. Yang, W. Brehm and P. Adelhelm, Angew. Chem. Int. Ed., 2018, 57(1), 102-120.   DOI
6 X. Zhang, L. Wang and H. Fu, J. Power Sources, 2021, 493(3), 229677.   DOI
7 L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, XQ. Yang and C. Wang, J. Am. Chem. Soc., 2020, 142(51), 21404-21409.   DOI
8 T. Xue and H. J. Fan, J. Energy Chem., 2021, 54, 194-201.   DOI
9 X. Guo, J. Zhou, C. Bai, X. Li, G. Fang and S. Liang, Mater. Today Energy, 2020, 16, 100396.   DOI
10 M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi and J. Kim, Chem. Mater., 2015, 27(10), 3609-3620.   DOI
11 N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, J. Am. Chem. Soc., 2016, 138(39), 12894-12901.   DOI
12 W. Xiong, D. Yang, T. K. A. Hoang, M. Ahmed, J. Zhi, X. Qiu and P. Chen, Energy Storage Mater., 2018, 15(1), 131-138.   DOI
13 O. Hanna, S. Luski, T. Brousse and D. Aurbach, J. Power Sources, 2017, 354, 148-156.   DOI
14 F. Zhang, C. Wang, J. Pan, F. Tian, S. Zeng, J. Yang and Y. Qian, Mater. Today Energy, 2020, 17, 100443.   DOI
15 J. Han, A. Mariani, A. Varzi and S. Passerini, J. Power Sources, 2021, 485(12), 229329.   DOI
16 F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, JA. Dura, K. Xu and C. Wang, Nat. Mater., 2018, 17(6), 543-549.   DOI
17 H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, KT. Mueller and J. Liu, Nat. Energy, 2016, 1(5), 1-7.
18 M. Li, Q. He, Z. Li, Q. Li, Y. Zhang, J. Meng, X. Liu, S. Li, B. Wu, L. Chen, Z. Liu, W. Luo, C. Han and L. Mai, Adv. Energy Mater., 2019, 9(29), 1-10.
19 M. Chamoun, W. R. Brant, C. W. Tai, G. Karlsson and D. Noreus, Energy Storage Mater., 2018, 15(6), 351-360.   DOI
20 V. Soundharrajan, B. Sambandam, S. Kim, S. Islam, J. Jo, S. Kim, V. Mathew, Y. kook Sun and J. Kim, Energy Storage Mater., 2020, 28(9), 407-417.   DOI
21 C. Yang, M. Han, H. Yan, F. Li, M. Shi and L. Zhao, J. Power Sources, 2020, 452(1), 227826.   DOI
22 F. Crameri and G. E. Shephard, 2021, Zenodo. https://doi.org/10.5281/zenodo.5501399.   DOI
23 X. Jia, C. Liu, ZG. Neale, J. Yang and G. Cao, Chem. Rev., 2020, 120(15), 7795-7866.   DOI
24 J. Huang, X. Tang, K. Liu, G. Fang, Z. He and Z. Li, Mater. Today Energy, 2020, 17, 100475.   DOI
25 S. Islam, MH. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Kim, J. Jo, JP. Baboo, DT. Pham, DY. Putro, Y-K. Sun and J. Kim, J. Mater. Chem. A, 2017, 5(44), 23299-23309.   DOI
26 M. Armand and J. M. Tarascon, Nature, 2008, 451(2), 652-657.   DOI
27 Y. Shi, Y. Chen, L. Shi, K. Wang, B. Wang, L. Li, Y. Ma, Y. Li, Z. Sun, W. Ali and S. Ding, Small, 2020, 16(23), 2000730.   DOI
28 N. Liu, B. Li, Z. He, L. Dai, H. Wang and L. Wang, J. Energy Chem., 2021, 59, 134-159.   DOI
29 F. Wang, Y. Liu, X. Wang, Z. Chang, Y. Wu and R. Holze, Chem. Electro. Chem., 2015, 2(7), 1024-1030.
30 T. K. A. Hoang, T. N. L. Doan, C. Lu, M. Ghaznavi, H. Zhao and P. Chen, ACS Sustain. Chem. Eng., 2017, 5(2), 1804-1811.   DOI
31 C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang and D. Cao, Electrochim. Acta, 2014, 116, 404-412.   DOI
32 W. Tang, Y. Hou, F. Wang, L. Liu, Y. Wu and K. Zhu, Nano Lett., 2013, 13(5), 2036-2040.   DOI
33 A. R. Mainar, E. Iruin and J. A. Blazquez, Energy Technol., 2020, 8(11), 2-8.
34 Z. He, X. Wu, Y. Li, C. Li, Z. He, Y. Xiang, L. Xiong, D. Chen, Y. Yu, K. Sun and P. Chen, J. Power Sources, 2015, 300, 453-459.   DOI
35 X. Tang, J. Zhou, M. Bai, W. Wu, S. Li and Y. Ma, J. Mater. Chem. A, 2019, 7(21), 13364-13371.   DOI
36 C. Qiu, X. Zhu, L. Xue, M. Ni, Y. Zhao, B. Liu and H. Xia, Electrochim. Acta, 2020, 351, 136445.   DOI
37 A. V. Potapenko and S. A. Kirillov, J. Energy Chem., 2014, 23(5), 543-558.   DOI
38 N. Kitamura, H. Iwatsuki and Y. Idemoto, J. Power Sources, 2009, 189(1), 114-120.   DOI
39 B. W. Olbasa, F. W. Fenta, S. F. Chiu, M. C. Tsai, C. J. Huang, B. A. Jote, T. T. Beyene, Y. F. Liao, C. H. Wang, W. N. Su, H. Dai and B. J. Hwang, ACS Appl. Energy Mater., 2020, 3(5), 4499-4508.   DOI
40 D. Batyrbekuly, S. Cajoly, B. Laik, J. P. Pereira-Ramos, N. Emery, Z. Bakenov and R. Baddour-Hadjean, Chem. Sus. Chem., 2020, 13(4), 724-731.   DOI
41 D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey and S. Z. Qiao, Angew. Chem. Int. Ed., 2019, 58(23), 7823-7828.   DOI