DOI QR코드

DOI QR Code

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes

  • Kamenskii, Mikhail A. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.) ;
  • Eliseeva, Svetlana N. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.) ;
  • Volkov, Alexey I. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.) ;
  • Kondratiev, Veniamin V. (Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab.)
  • Received : 2021.07.09
  • Accepted : 2021.09.29
  • Published : 2022.05.28

Abstract

Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.

Keywords

Acknowledgement

The financial support from RFBR (grant № 21-53-53012) is gratefully acknowledged. The authors would like to thank the Center for X-ray Diffraction Methods and the Interdisciplinary Center for Nanotechnology of Research Park of Saint Petersburg State University.

References

  1. M. Armand and J. M. Tarascon, Nature, 2008, 451(2), 652-657. https://doi.org/10.1038/451652a
  2. M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edstrom, C. Ekberg, D. Guyomard, B. Lestriez, P. Novak, M. Petranikova, W. Porcher, S. Trabesinger, M. Wohlfahrt-Mehrens and H. Zhang, J. Power Sources, 2020, 479(7), 228708. https://doi.org/10.1016/j.jpowsour.2020.228708
  3. P. K. Nayak, L. Yang, W. Brehm and P. Adelhelm, Angew. Chem. Int. Ed., 2018, 57(1), 102-120. https://doi.org/10.1002/anie.201703772
  4. Y. Shi, Y. Chen, L. Shi, K. Wang, B. Wang, L. Li, Y. Ma, Y. Li, Z. Sun, W. Ali and S. Ding, Small, 2020, 16(23), 2000730. https://doi.org/10.1002/smll.202000730
  5. X. Zhang, L. Wang and H. Fu, J. Power Sources, 2021, 493(3), 229677. https://doi.org/10.1016/j.jpowsour.2021.229677
  6. L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, XQ. Yang and C. Wang, J. Am. Chem. Soc., 2020, 142(51), 21404-21409. https://doi.org/10.1021/jacs.0c09794
  7. N. Liu, B. Li, Z. He, L. Dai, H. Wang and L. Wang, J. Energy Chem., 2021, 59, 134-159. https://doi.org/10.1016/j.jechem.2020.10.044
  8. T. Xue and H. J. Fan, J. Energy Chem., 2021, 54, 194-201. https://doi.org/10.1016/j.jechem.2020.05.056
  9. X. Guo, J. Zhou, C. Bai, X. Li, G. Fang and S. Liang, Mater. Today Energy, 2020, 16, 100396. https://doi.org/10.1016/j.mtener.2020.100396
  10. S. Islam, MH. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Kim, J. Jo, JP. Baboo, DT. Pham, DY. Putro, Y-K. Sun and J. Kim, J. Mater. Chem. A, 2017, 5(44), 23299-23309. https://doi.org/10.1039/C7TA07170A
  11. M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi and J. Kim, Chem. Mater., 2015, 27(10), 3609-3620. https://doi.org/10.1021/cm504717p
  12. F. Zhang, C. Wang, J. Pan, F. Tian, S. Zeng, J. Yang and Y. Qian, Mater. Today Energy, 2020, 17, 100443. https://doi.org/10.1016/j.mtener.2020.100443
  13. C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang and D. Cao, Electrochim. Acta, 2014, 116, 404-412. https://doi.org/10.1016/j.electacta.2013.11.090
  14. N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, J. Am. Chem. Soc., 2016, 138(39), 12894-12901. https://doi.org/10.1021/jacs.6b05958
  15. O. Hanna, S. Luski, T. Brousse and D. Aurbach, J. Power Sources, 2017, 354, 148-156. https://doi.org/10.1016/j.jpowsour.2017.04.039
  16. W. Tang, Y. Hou, F. Wang, L. Liu, Y. Wu and K. Zhu, Nano Lett., 2013, 13(5), 2036-2040. https://doi.org/10.1021/nl400199r
  17. G. Yuan, J. Bai, T. N. L. Doan and P. Chen, Mater. Lett., 2014, 137, 311-314. https://doi.org/10.1016/j.matlet.2014.09.019
  18. H. Seki, K. Yoshima, Y. Yamashita, S. Matsuno and N. Takami, J. Power Sources, 2021, 482(6), 228950. https://doi.org/10.1016/j.jpowsour.2020.228950
  19. A. R. Mainar, E. Iruin and J. A. Blazquez, Energy Technol., 2020, 8(11), 2-8.
  20. J. Han, A. Mariani, A. Varzi and S. Passerini, J. Power Sources, 2021, 485(12), 229329. https://doi.org/10.1016/j.jpowsour.2020.229329
  21. F. Wang, Y. Liu, X. Wang, Z. Chang, Y. Wu and R. Holze, Chem. Electro. Chem., 2015, 2(7), 1024-1030.
  22. W. Xiong, D. Yang, T. K. A. Hoang, M. Ahmed, J. Zhi, X. Qiu and P. Chen, Energy Storage Mater., 2018, 15(1), 131-138. https://doi.org/10.1016/j.ensm.2018.03.023
  23. T. K. A. Hoang, T. N. L. Doan, C. Lu, M. Ghaznavi, H. Zhao and P. Chen, ACS Sustain. Chem. Eng., 2017, 5(2), 1804-1811. https://doi.org/10.1021/acssuschemeng.6b02553
  24. F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, JA. Dura, K. Xu and C. Wang, Nat. Mater., 2018, 17(6), 543-549. https://doi.org/10.1038/s41563-018-0063-z
  25. Z. He, X. Wu, Y. Li, C. Li, Z. He, Y. Xiang, L. Xiong, D. Chen, Y. Yu, K. Sun and P. Chen, J. Power Sources, 2015, 300, 453-459. https://doi.org/10.1016/j.jpowsour.2015.09.096
  26. H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, KT. Mueller and J. Liu, Nat. Energy, 2016, 1(5), 1-7.
  27. M. Li, Q. He, Z. Li, Q. Li, Y. Zhang, J. Meng, X. Liu, S. Li, B. Wu, L. Chen, Z. Liu, W. Luo, C. Han and L. Mai, Adv. Energy Mater., 2019, 9(29), 1-10.
  28. C. Qiu, X. Zhu, L. Xue, M. Ni, Y. Zhao, B. Liu and H. Xia, Electrochim. Acta, 2020, 351, 136445. https://doi.org/10.1016/j.electacta.2020.136445
  29. M. Chamoun, W. R. Brant, C. W. Tai, G. Karlsson and D. Noreus, Energy Storage Mater., 2018, 15(6), 351-360. https://doi.org/10.1016/j.ensm.2018.06.019
  30. V. Soundharrajan, B. Sambandam, S. Kim, S. Islam, J. Jo, S. Kim, V. Mathew, Y. kook Sun and J. Kim, Energy Storage Mater., 2020, 28(9), 407-417. https://doi.org/10.1016/j.ensm.2019.12.021
  31. N. Kitamura, H. Iwatsuki and Y. Idemoto, J. Power Sources, 2009, 189(1), 114-120. https://doi.org/10.1016/j.jpowsour.2008.10.046
  32. C. Yang, M. Han, H. Yan, F. Li, M. Shi and L. Zhao, J. Power Sources, 2020, 452(1), 227826. https://doi.org/10.1016/j.jpowsour.2020.227826
  33. F. Crameri and G. E. Shephard, 2021, Zenodo. https://doi.org/10.5281/zenodo.5501399.
  34. A. V. Potapenko and S. A. Kirillov, J. Energy Chem., 2014, 23(5), 543-558. https://doi.org/10.1016/S2095-4956(14)60184-4
  35. J. Yan, J. Wang, H. Liu, Z. Bakenov, D. Gosselink and P. Chen, J. Power Sources, 2012, 216, 222-226. https://doi.org/10.1016/j.jpowsour.2012.05.063
  36. X. Tang, J. Zhou, M. Bai, W. Wu, S. Li and Y. Ma, J. Mater. Chem. A, 2019, 7(21), 13364-13371. https://doi.org/10.1039/c9ta02718a
  37. B. W. Olbasa, F. W. Fenta, S. F. Chiu, M. C. Tsai, C. J. Huang, B. A. Jote, T. T. Beyene, Y. F. Liao, C. H. Wang, W. N. Su, H. Dai and B. J. Hwang, ACS Appl. Energy Mater., 2020, 3(5), 4499-4508. https://doi.org/10.1021/acsaem.0c00183
  38. X. Jia, C. Liu, ZG. Neale, J. Yang and G. Cao, Chem. Rev., 2020, 120(15), 7795-7866. https://doi.org/10.1021/acs.chemrev.9b00628
  39. D. Batyrbekuly, S. Cajoly, B. Laik, J. P. Pereira-Ramos, N. Emery, Z. Bakenov and R. Baddour-Hadjean, Chem. Sus. Chem., 2020, 13(4), 724-731. https://doi.org/10.1002/cssc.201903072
  40. D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey and S. Z. Qiao, Angew. Chem. Int. Ed., 2019, 58(23), 7823-7828. https://doi.org/10.1002/anie.201904174
  41. J. Huang, X. Tang, K. Liu, G. Fang, Z. He and Z. Li, Mater. Today Energy, 2020, 17, 100475. https://doi.org/10.1016/j.mtener.2020.100475