• Title/Summary/Keyword: Lithium ionic conductivity

Search Result 145, Processing Time 0.02 seconds

Investigation of Lithium Transference Number in PMMA Composite Polymer Electrolytes Using Monte Carlo (MC) Simulation and Recurrence Relation

  • Koh, Renwei Eric;Sun, Cha Chee;Yap, Yee Ling;Cheang, Pei Ling;You, Ah Heng
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.217-224
    • /
    • 2021
  • In this study, Monte Carlo (MC) simulation is conducted with recurrence relation to study the effect of SiO2 with different particle size and their roles in enhancing the ionic conductivity and lithium transference number of PMMA composite polymer electrolytes (CPEs). The MC simulated ionic conductivity is verified with the measurements from Electrochemical Impedance Spectroscopy (EIS). Then, the lithium transference number of CPEs is calculated using recurrence relation with the MC simulated current density and the reference transference number obtained. Incorporation of micron-size SiO2 (≤10 ㎛) fillers into the mixture improves the ionic conductivity from 8.60×10-5 S/cm to 2.35×10-4 S/cm. The improvement is also observed on the lithium transference number, where it increases from 0.088 to 0.3757. Furthermore, the addition of nano-sized SiO2 (≤12 nm) fillers further increases the ionic conductivity up towards 3.79×10-4 S/cm and lithium transference number of 0.4105. The large effective surface area of SiO2 fillers is responsible for the improvement in ionic conductivity and the transference number in PMMA composite polymer electrolytes.

Electrochemical Characterization of Lithium Polyelectrolyte Based on Ionic Liquid

  • Cha, E.-H.;Lim, S.-A.;Kim, D.-W.;Choi, N.-S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.271-275
    • /
    • 2009
  • Five novel lithium polyelectrolyte-ionic liquid systems, using poly (lithium 2-acrylamido-2-methyl propanesulfonate; PAMPSLi) were prepared and their electrochemical properties were measured. The ionic conductivity of the PAMPSLi/1-ethyl-3-methylimidazolium tricyano methanide (emImTCM) system was exhibited high conductivity (1.28 $\times$ $10^{-3}$ $S/cm^{-1}$). The high conductivity and low viscosity of PAMPSLi/emImTCM system is due to the high flexibility of imidazolium cation and dissociation of lithium cation from the polymer chains. The PAMPSLi/N,N-dimethyl-N-propyl-Nbutylammonium tricyanomethanide ($N_{1134}TCM$) and PAMPSLi/N, N-dimethyl-N-propyl-N-butylammonium dicyanamide ($N_{1134}DCA$) systems showed fairly high conductivity (6.3 $\times$ $10^{-4}$ $S/cm^{-1}$, 6.0 $\times$ 10.4 S/cm.1). PAMPSLi/Trihexyl (tetradecyl) phosphonium bis (trifluoromethane sulfonyl) amide ($P_{66614}TFSA$) exhibited low conductivity (2.22 $\times$ $10^{-5}$ $Scm^{-1}$) and thermally stable over 400$^{\circ}C$.

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Kim, Kyung-Chan;Roh, Sae-Weon;Ryu, Sang-Woog
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

Physical Properties of Lithium Co-polyelectrolyte Based on Imidazolium and Ammonium-type Ionic Liquids

  • Cha, E.H.;Lim, S.A.;Kim, D.W.;Lee, J.K.;Park, J.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.198-202
    • /
    • 2010
  • Lithium co-polyelectrolyte-ionic liquid systems, using poly (lithium 2-acrylamido-2-methyl propanesulfonate; PAMPSLi) and polyvinyl formamid (PVF) were prepared and their electrochemical and physical properties were measured. The conductivity of co-polymer systems, PAMPSLi/PVF/N, N-dimethyl-N-propyl-N-butylammonium tricyanomethanide (PAMPSLi/PVF/$N_{1134}$TCM) and PAMPSLi/PVF/N, N-dimethyl-N-propyl-N-butylammonium dicyanamide (PAMPSLi/PVF/$N_{1134}$DCA) exhibited low viscosity ($N_{1134}$TCM:$N_{1134}$DCA 28.6cP, 28.7cP) and higher conductivity ($2.48{\times}10^{-3}Scm^{-1}$, $2.2{\times}10^{-3}Scm^{-1}$) than homopolymer system. The ionic conductivity PAMPSLi/PVF/1-ethyl-3-methyl imidazolium dicyanamide (PAMPSLi/PVF/emImDCA) exhibited $1.54{\times}10^{-3}Scm^{-1}$ and low viscosity (emImDCA: 28.09cP). High flexibility of imidazolium cation and dissociation of lithium cation from the co-polymer chains were affected by high conductivity and low viscosity.

Investigation of Microstructure and Ionic Conductivity of Li1.5Al0.5Ti1.5(PO4)3 Ceramic Solid Electrolytes by B2O3 Incorporation (Li1.5Al0.5Ti1.5(PO4)3 세라믹 고체전해질의 B2O3 첨가에 따른 미세구조 및 이온전도도에 대한 연구)

  • Min-Jae Kwon;Hyeon Il Han;Seulgi Shin;Sang-Mo Koo;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.627-632
    • /
    • 2023
  • Lithium-ion batteries are widely used in various applications, including electric vehicles and portable electronics, due to their high energy density and long cycle life. The performance of lithium-ion batteries can be improved by using solid electrolytes, in terms of higher safety, stability, and energy density. Li1.5Al0.5Ti1.5(PO4)3 (LATP) is a promising solid electrolyte for all-solid-state lithium batteries due to its high ionic conductivity and excellent stability. However, the ionic conductivity of LATP needs to be improved for commercializing all-solid-state lithium battery systems. In this study, we investigate the microstructures and ionic conductivities of LATP by incorporating B2O3 glass ceramics. The smaller grain size and narrow size distribution were obtained after the introduction of B2O3 in LATP, which is attributed to the B2O3 glass on grain boundaries of LATP. Moreover, higher ionic conductivity can be obtained after B2O3 incorporation, where the optimal composition is 0.1 wt% B2O3 incorporated LATP and the ionic conductivity reaches 8.8×10-5 S/cm, more than 3 times higher value than pristine LATP. More research could be followed for having higher ionic conductivity and density by optimizing the processing conditions. This facile approach for establishing higher ionic conductivity in LATP solid electrolytes could accelerate the commercialization of all-solid-state lithium batteries.

Dependence of the lithium ionic conductivity on the B-siteion substitution in $(Li_{0.5}La_{0.5})Ti_{1-x}M_xO_3$

  • Kim, Jin-Gyun;Kim, Ho-Gi
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.9-17
    • /
    • 1998
  • The dependence of the ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1-xMxO3 (M=Sn, Zr, Mn, Ge) system has been studied. Same valence state and various electronic configuration and ionic radius of Sn4+, Zr4+, Mn4+ and Ge4+(4d10(0.69$\AA$), 4p6(0.72$\AA$), 3d10(0.54$\AA$) and 3d3(0.54$\AA$), respectively) induced the various crystallographic variaton with substitutions. So it was possibleto investigate the crystallographic factor which influence the ionic conduction by observing the dependence of the conductivity on the crystallographic factor which influence the ionic conduction by observing the dependence of the conductivity on the crystallographic variations. We found that the conductivity increased with decreasing the radii of B-site ions or vice versa and octahedron distortion disturb the ion conduction. The reason for this reciprocal proportion of conductivity on the radius of B-site ions has been examined on the base of the interatomic bond strength change due to the cation substitutions. The results were good in agreement with the experimental results. Therefore it could be concluded that the interatomic bond strength change due to the cation substitutions may be the one of major factors influencing the lithium ion conductivity in perovskite(Li0.5La0.5) TiO3system.

  • PDF

Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes

  • Hendcrson W.A.;Shin J.H.;Alessandrini F.;Passcrini S.
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.153-168
    • /
    • 2003
  • Polymer electrolytes - solid polymeric membranes with dissolved salts - are being intensively studied for use in all-solid-state lithium-metal-polymer consumer electronic device. The low ionic conductivity at room temperature of existing polymer electrolytes, however, has seriously hindered the development of such batteries for many applications. The incorporation of salts molten at room temperature (room temperature ionic liquids or RTILs) into polymer electrolytes may be the necessary solution to overcoming the inherent ionic conductivity limitations of 'dry' polymer electrolytes.

  • PDF

Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries

  • Nguyen, Cao Cuong;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-112
    • /
    • 2013
  • Lithium diffusivity of the silicon (Si)-based materials of Si-Cu and $SiO_x$ (x = 0.4, 0.85) with improved interfacial stability to electrolyte have been determined, using variable rate cyclic voltammetry with film model electrodes. Lithium diffusivity is found to depend on the intrinsic properties of anode material and electrolyte; the fraction of oxygen for $SiO_x$ (x = 0.4, 0.85), which is directly related to electrical conductivity, and the electrolyte type with different ionic conductivity and viscosity, carbonate-based liquid electrolyte or ionic liquid-based electrolyte, affect the lithium diffusivity.

Ionic Conductivity of Anion Receptor Grafted Siloxane Polymers for Solid Polymer Electrolytes

  • Lee, Won-Sil;Kim, Dong-Wook;Lee, Chang-In;Woo, Seong-Ihl;Kang, Yong-Ku
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • We have prepared siloxane polymers grafted with trifluoromethane-sulfonylamide and oligoether side chains for solid polymer electrolytes with enhanced ionic conductivity. The grafted trifluoromethane sulfonylamide groups seem to be effective as an anion recepting site to enhance the ionic conductivity of the solid polymer electrolyte. The anion receptor grafted siloxane polymers showed one order of magnitude higher ionic conductivity than the siloxane polymers without anion receptor grafts. The fitting parameter A of the VTF plot which was related to the carrier density of the electrolyte increased with increasing the number of grafted anion receptor. The results of experiment indicate that the anion-complexing site of the anion receptor grafted polymer host effectively traps the anions. The anion receptor grafted polymer was found to be a promising material for lithium polymer batteries.