Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01459

Investigation of Lithium Transference Number in PMMA Composite Polymer Electrolytes Using Monte Carlo (MC) Simulation and Recurrence Relation  

Koh, Renwei Eric (Faculty of Engineering and Technology, Multimedia University)
Sun, Cha Chee (Faculty of Engineering and Technology, Multimedia University)
Yap, Yee Ling (Faculty of Engineering and Technology, Multimedia University)
Cheang, Pei Ling (Faculty of Engineering and Technology, Multimedia University)
You, Ah Heng (Faculty of Engineering and Technology, Multimedia University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 217-224 More about this Journal
Abstract
In this study, Monte Carlo (MC) simulation is conducted with recurrence relation to study the effect of SiO2 with different particle size and their roles in enhancing the ionic conductivity and lithium transference number of PMMA composite polymer electrolytes (CPEs). The MC simulated ionic conductivity is verified with the measurements from Electrochemical Impedance Spectroscopy (EIS). Then, the lithium transference number of CPEs is calculated using recurrence relation with the MC simulated current density and the reference transference number obtained. Incorporation of micron-size SiO2 (≤10 ㎛) fillers into the mixture improves the ionic conductivity from 8.60×10-5 S/cm to 2.35×10-4 S/cm. The improvement is also observed on the lithium transference number, where it increases from 0.088 to 0.3757. Furthermore, the addition of nano-sized SiO2 (≤12 nm) fillers further increases the ionic conductivity up towards 3.79×10-4 S/cm and lithium transference number of 0.4105. The large effective surface area of SiO2 fillers is responsible for the improvement in ionic conductivity and the transference number in PMMA composite polymer electrolytes.
Keywords
Solid Polymer Electrolytes; Monte Carlo Simulation; Transference Number; Recurrence Relation; Ionic Conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. C. Agrawal, G. P. Pandey, J. Phys. D. Appl. Phys., 2008, 22(41), 223001.
2 S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci., 2020, 7(5), 1903088.   DOI
3 R. C. Agrawal, R. K. Gupta, J. Mater. Sci., 1999, 34(6), 1131-1162.   DOI
4 L. R. A. K. Bandara, M. A. K. L. Dissanayake, B. Mellander, Electrochim. Acta., 1998, 43(10-11), 1447-1451.   DOI
5 W. Xiao, Z.Y Wang, Y. Zhang, R. Fang, Z.Yuan, C. Miao, X. Yan, Y. Jiang, J. Power Sources., 2018, 382, 128-134.   DOI
6 M. Forsyth, D. R. MacFarlane, A. Best, J. Adebahr, P. Jacobsson, A. J. Hill. Solid State Ionics., 2002, 147(3-4), 203-211.   DOI
7 X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang. S. Dong, Mater. Chem. Phys., 2002, 74(1), 98-103.   DOI
8 S. D. Druger, M. A. Rather, A, Nitzan. Solid State Ionics., 1983, 9, 1115-1120.
9 A. Wagner, H. Kliem, J. Appl. Phys., 2002, 91(10), 6638-6649.   DOI
10 Sudaryanto, E. Yulianti, H. Jodi, Polym Plast Technol Eng., 2015, 54(3), 290-295.   DOI
11 M. Faridi, L. Naji, S. Kazemifard, N. Pourali, Chem. Pap., 2018, 72(9), 2289-2300.   DOI
12 C. C. Sun, A. H. You, L. L. Teo, J. Polym. Eng., 2019, 39(7), 612-619.   DOI
13 S. Kurapati, S. S. Gunturi, K. J. Nadella, H. Erothu, Polym. Bull., 2019, 76(10), 5463-5481.   DOI
14 Y. S. Lim, H. A. Jung, H. Hwang, Energies., 2018, 11(10), 2559-2569.   DOI
15 Y. L. Yap, A. H. You, L. L. Teo, Ionics., 2019, 25(7), 3087-3098.   DOI
16 J. Evans, C. A. Vincent, P. G. Bruce, Polymer., 1987, 28(13), 2324-2328.   DOI
17 I. Zakariya'u, B. Gultekin, V. Singh, P. K. Singh, High Perform Polym., 2020, 32(2), 201-207.   DOI
18 S. Ramo. Proceedings of the IRE., 1939, 27(9), 584-585.   DOI
19 B. Jinisha, K. M. Anilkumar, M. Manoj, V. S. Pradeep, S. Jayalekshmi, Electrochim. Acta., 2017, 235, 210-222.   DOI
20 K. Matsuo, M. C. Teich, B. E. A. Saleh, J. Light. Technol., 1985, 3(6), 1223-1231.   DOI
21 P. Pal, A. Ghosh, Solid State Ionics., 2018, 319, 117-124.   DOI
22 K. W. Chew, K. W. Tan, Int. J. Electrochem. Sci., 2011, 6(11), 5792-5801.
23 M. A. K. L. Dissanayake, P. A. R. D. Jayathilaka, R. S. P. Bokalawala, I. Albinsson, B. E. Mellander, J. Power Sources., 2003, 119, 409-414.
24 H. M. J. C. Pitawala, M. A. K. L. Dissanayake, V. A. Seneviratne, Solid State Ionics., 2007, 178(13-14), 885-888.   DOI
25 G. B. Appetecchi, F. Croce, B. Scrosati, J. Power Sources., 1997, 66(1-2), 77-82.   DOI
26 Z. Li, H. M. Huang, J. K. Zhu, J. F. Wu, H. Yang, L. Wei, X. Guo, ACS Appl. Mater. Interfaces., 2019, 11(1), 784-791.   DOI
27 W. Wang, P. Alexandridis, Polymers., 2016, 8(11), 387.   DOI
28 K. Pozyczka, M. Marzantowicz, J. R. Dygas, F. Krok, Electrochim. Acta., 2017, 227, 127-135.   DOI
29 A. Hosseinioun, P. Nurnberg, M. Schonhoff, D. Diddens, E. Paillard, RSC Adv., 2019, 9(47), 27574-27582.   DOI
30 P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu. X. Liu. Front. Chem., 2019, 7, 552.   DOI
31 L. Sampath Kumar, P. Christopher Selvin, S. Selvasekarapandian, Polym. Bull., 2020.
32 Y. Liu, J. Y. Lee, L. Hong, J. Power Sources., 2004, 129(2), 303-311.   DOI