DOI QR코드

DOI QR Code

Investigation of Lithium Transference Number in PMMA Composite Polymer Electrolytes Using Monte Carlo (MC) Simulation and Recurrence Relation

  • Koh, Renwei Eric (Faculty of Engineering and Technology, Multimedia University) ;
  • Sun, Cha Chee (Faculty of Engineering and Technology, Multimedia University) ;
  • Yap, Yee Ling (Faculty of Engineering and Technology, Multimedia University) ;
  • Cheang, Pei Ling (Faculty of Engineering and Technology, Multimedia University) ;
  • You, Ah Heng (Faculty of Engineering and Technology, Multimedia University)
  • Received : 2020.09.21
  • Accepted : 2020.11.03
  • Published : 2021.05.28

Abstract

In this study, Monte Carlo (MC) simulation is conducted with recurrence relation to study the effect of SiO2 with different particle size and their roles in enhancing the ionic conductivity and lithium transference number of PMMA composite polymer electrolytes (CPEs). The MC simulated ionic conductivity is verified with the measurements from Electrochemical Impedance Spectroscopy (EIS). Then, the lithium transference number of CPEs is calculated using recurrence relation with the MC simulated current density and the reference transference number obtained. Incorporation of micron-size SiO2 (≤10 ㎛) fillers into the mixture improves the ionic conductivity from 8.60×10-5 S/cm to 2.35×10-4 S/cm. The improvement is also observed on the lithium transference number, where it increases from 0.088 to 0.3757. Furthermore, the addition of nano-sized SiO2 (≤12 nm) fillers further increases the ionic conductivity up towards 3.79×10-4 S/cm and lithium transference number of 0.4105. The large effective surface area of SiO2 fillers is responsible for the improvement in ionic conductivity and the transference number in PMMA composite polymer electrolytes.

Keywords

Acknowledgement

This work is supported by FRGS/ 2019, Ministry of Higher Education, Malaysia.

References

  1. R. C. Agrawal, G. P. Pandey, J. Phys. D. Appl. Phys., 2008, 22(41), 223001.
  2. K. Pozyczka, M. Marzantowicz, J. R. Dygas, F. Krok, Electrochim. Acta., 2017, 227, 127-135. https://doi.org/10.1016/j.electacta.2016.12.172
  3. S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci., 2020, 7(5), 1903088. https://doi.org/10.1002/advs.201903088
  4. R. C. Agrawal, R. K. Gupta, J. Mater. Sci., 1999, 34(6), 1131-1162. https://doi.org/10.1023/A:1004598902146
  5. L. R. A. K. Bandara, M. A. K. L. Dissanayake, B. Mellander, Electrochim. Acta., 1998, 43(10-11), 1447-1451. https://doi.org/10.1016/S0013-4686(97)10082-2
  6. M. Forsyth, D. R. MacFarlane, A. Best, J. Adebahr, P. Jacobsson, A. J. Hill. Solid State Ionics., 2002, 147(3-4), 203-211. https://doi.org/10.1016/S0167-2738(02)00017-6
  7. L. Sampath Kumar, P. Christopher Selvin, S. Selvasekarapandian, Polym. Bull., 2020.
  8. X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang. S. Dong, Mater. Chem. Phys., 2002, 74(1), 98-103. https://doi.org/10.1016/S0254-0584(01)00408-4
  9. W. Xiao, Z.Y Wang, Y. Zhang, R. Fang, Z.Yuan, C. Miao, X. Yan, Y. Jiang, J. Power Sources., 2018, 382, 128-134. https://doi.org/10.1016/j.jpowsour.2018.02.012
  10. S. D. Druger, M. A. Rather, A, Nitzan. Solid State Ionics., 1983, 9, 1115-1120.
  11. A. Wagner, H. Kliem, J. Appl. Phys., 2002, 91(10), 6638-6649. https://doi.org/10.1063/1.1468912
  12. Sudaryanto, E. Yulianti, H. Jodi, Polym Plast Technol Eng., 2015, 54(3), 290-295. https://doi.org/10.1080/03602559.2014.977424
  13. M. Faridi, L. Naji, S. Kazemifard, N. Pourali, Chem. Pap., 2018, 72(9), 2289-2300. https://doi.org/10.1007/s11696-018-0458-y
  14. C. C. Sun, A. H. You, L. L. Teo, J. Polym. Eng., 2019, 39(7), 612-619. https://doi.org/10.1515/polyeng-2019-0088
  15. S. Kurapati, S. S. Gunturi, K. J. Nadella, H. Erothu, Polym. Bull., 2019, 76(10), 5463-5481. https://doi.org/10.1007/s00289-018-2659-5
  16. Y. S. Lim, H. A. Jung, H. Hwang, Energies., 2018, 11(10), 2559-2569. https://doi.org/10.3390/en11102559
  17. I. Zakariya'u, B. Gultekin, V. Singh, P. K. Singh, High Perform Polym., 2020, 32(2), 201-207. https://doi.org/10.1177/0954008319895556
  18. Y. L. Yap, A. H. You, L. L. Teo, Ionics., 2019, 25(7), 3087-3098. https://doi.org/10.1007/s11581-019-02842-8
  19. J. Evans, C. A. Vincent, P. G. Bruce, Polymer., 1987, 28(13), 2324-2328. https://doi.org/10.1016/0032-3861(87)90394-6
  20. B. Jinisha, K. M. Anilkumar, M. Manoj, V. S. Pradeep, S. Jayalekshmi, Electrochim. Acta., 2017, 235, 210-222. https://doi.org/10.1016/j.electacta.2017.03.118
  21. K. Matsuo, M. C. Teich, B. E. A. Saleh, J. Light. Technol., 1985, 3(6), 1223-1231. https://doi.org/10.1109/JLT.1985.1074334
  22. S. Ramo. Proceedings of the IRE., 1939, 27(9), 584-585. https://doi.org/10.1109/JRPROC.1939.228757
  23. P. Pal, A. Ghosh, Solid State Ionics., 2018, 319, 117-124. https://doi.org/10.1016/j.ssi.2018.02.009
  24. K. W. Chew, K. W. Tan, Int. J. Electrochem. Sci., 2011, 6(11), 5792-5801.
  25. M. A. K. L. Dissanayake, P. A. R. D. Jayathilaka, R. S. P. Bokalawala, I. Albinsson, B. E. Mellander, J. Power Sources., 2003, 119, 409-414.
  26. H. M. J. C. Pitawala, M. A. K. L. Dissanayake, V. A. Seneviratne, Solid State Ionics., 2007, 178(13-14), 885-888. https://doi.org/10.1016/j.ssi.2007.04.008
  27. G. B. Appetecchi, F. Croce, B. Scrosati, J. Power Sources., 1997, 66(1-2), 77-82. https://doi.org/10.1016/S0378-7753(96)02484-6
  28. Z. Li, H. M. Huang, J. K. Zhu, J. F. Wu, H. Yang, L. Wei, X. Guo, ACS Appl. Mater. Interfaces., 2019, 11(1), 784-791. https://doi.org/10.1021/acsami.8b17279
  29. W. Wang, P. Alexandridis, Polymers., 2016, 8(11), 387. https://doi.org/10.3390/polym8110387
  30. Y. Liu, J. Y. Lee, L. Hong, J. Power Sources., 2004, 129(2), 303-311. https://doi.org/10.1016/j.jpowsour.2003.11.026
  31. A. Hosseinioun, P. Nurnberg, M. Schonhoff, D. Diddens, E. Paillard, RSC Adv., 2019, 9(47), 27574-27582. https://doi.org/10.1039/C9RA05917B
  32. P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu. X. Liu. Front. Chem., 2019, 7, 552. https://doi.org/10.3389/fchem.2019.00552