Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.3.271

Electrochemical Characterization of Lithium Polyelectrolyte Based on Ionic Liquid  

Cha, E.-H. (College of liberal arts & Science, Hoseo Univ)
Lim, S.-A. (School of AIBN, Queensland University)
Kim, D.-W. (Dept of chemical Engineering HanYang Univ)
Choi, N.-S. (R&D Center, Samsung SDI Co. Ltd.)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.3, 2009 , pp. 271-275 More about this Journal
Abstract
Five novel lithium polyelectrolyte-ionic liquid systems, using poly (lithium 2-acrylamido-2-methyl propanesulfonate; PAMPSLi) were prepared and their electrochemical properties were measured. The ionic conductivity of the PAMPSLi/1-ethyl-3-methylimidazolium tricyano methanide (emImTCM) system was exhibited high conductivity (1.28 $\times$ $10^{-3}$ $S/cm^{-1}$). The high conductivity and low viscosity of PAMPSLi/emImTCM system is due to the high flexibility of imidazolium cation and dissociation of lithium cation from the polymer chains. The PAMPSLi/N,N-dimethyl-N-propyl-Nbutylammonium tricyanomethanide ($N_{1134}TCM$) and PAMPSLi/N, N-dimethyl-N-propyl-N-butylammonium dicyanamide ($N_{1134}DCA$) systems showed fairly high conductivity (6.3 $\times$ $10^{-4}$ $S/cm^{-1}$, 6.0 $\times$ 10.4 S/cm.1). PAMPSLi/Trihexyl (tetradecyl) phosphonium bis (trifluoromethane sulfonyl) amide ($P_{66614}TFSA$) exhibited low conductivity (2.22 $\times$ $10^{-5}$ $Scm^{-1}$) and thermally stable over 400$^{\circ}C$.
Keywords
Conductivity; Imidazolium ionic liquid; Ammonium ionic liquids; Phosphonium ionic liquids; Viscosity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Katsuhiko Tsunashima and masashi Sugiya, electrochemistry communication 9, 2353-2358 (2007)   DOI   ScienceOn
2 E. H. Cha, S. A. Lim, J. H. Park, D. W. Kim, and D. R. Macfarlane, J.of power sources 178, 779-782 (2008)   DOI   ScienceOn
3 A. Stewart, Forsyth, Jennifer M. Pringle, and Douglas R. MacFarlane, Aust, J. Chem. 57, 113-119 (2004)   DOI   ScienceOn
4 A. B. McEwen, H. L. Ngo, K. LeCompte and J. L. Goldman ,J.Electrochem Soc. 146, 1687-1689 (1999)   DOI   ScienceOn
5 Kaori Ito, Naoko Nishina, and hiroyuki Ohno, Electrochimica Acta .45, 1295-1298 (2000)   DOI   ScienceOn
6 Thomas E. Sutto, Hugh C. De long, and Paul C. Trulove Z. Naturforch.57a 839-846 (2002)   ScienceOn
7 R. T. Carlin, J. Fuller, W. K. Kuhn, M. J. Lysaght, and P. C. Trulove, J.Appl. Electrochem. 26, 1147-1153 (1996)   ScienceOn
8 Katsuhiko Tsunashima and masashi Sugiya, electrochemical and solid-state letter 1192) A17-A19 (2008)
9 Stewart A, Forsyth, Stuart R, Qing Dai, Douglas R. Macfarlane, Aust.J. Chem. 57, 121-124 (2004)   DOI   ScienceOn
10 J, Travas-Sejdic, R. Steiner, Desilvestro, P. pickering, Electrochim. Acta 46, 10-11 1461-1466 (2001)
11 F. M. Gray. Solid polymer Electrolytes: Fundamentals and Applications, VCH,New york, (1991)
12 J. Sun, D. R. Macfarlane, and M. Forsyth, Solid state ionics 147, 333-339 (2002)   DOI   ScienceOn
13 S. Forsyth, S. R. Batten, Q. Dai, and D. R. acfarlane, Aust. J.Chem.57, 121-124 (2004)   DOI   ScienceOn
14 M. Forsyth, J, Sun, F. Zhou, R. MacFarlane, Electrochimica Acta 48, 2129-2136 (2003)   DOI   ScienceOn
15 Hiroyuki Ohno, Masahiro Yoshizawa, and Wataru Ogihara, Electrochimica Acta 50, 255-261 (2004)   DOI   ScienceOn
16 Wataru Ogihara, Satiko Washiro, Hiromitsu nakajima, Hiroyuki Ohno, Electro- chimica Acta 51, 2614-2619 (2006)   DOI   ScienceOn
17 Qing Dai, David B. Menzies, and D. R. Macfarlane, Stuart R, Batten, Stewart Forsyth, Leone spiccia, Yi-Bing Cheng, Maria Forsyth, C.R.Chimie 9, 617-621 (2006)   DOI   ScienceOn