DOI QR코드

DOI QR Code

Li1.5Al0.5Ti1.5(PO4)3 세라믹 고체전해질의 B2O3 첨가에 따른 미세구조 및 이온전도도에 대한 연구

Investigation of Microstructure and Ionic Conductivity of Li1.5Al0.5Ti1.5(PO4)3 Ceramic Solid Electrolytes by B2O3 Incorporation

  • 권민재 (광운대학교 전자재료공학과) ;
  • 한현일 (광운대학교 전자재료공학과) ;
  • 신슬기 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과) ;
  • 신원호 (광운대학교 전자재료공학과)
  • Min-Jae Kwon (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Hyeon Il Han (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Seulgi Shin (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Weon Ho Shin (Department of Electronic Materials Engineering, Kwangwoon University)
  • 투고 : 2023.09.03
  • 심사 : 2023.09.27
  • 발행 : 2023.11.01

초록

Lithium-ion batteries are widely used in various applications, including electric vehicles and portable electronics, due to their high energy density and long cycle life. The performance of lithium-ion batteries can be improved by using solid electrolytes, in terms of higher safety, stability, and energy density. Li1.5Al0.5Ti1.5(PO4)3 (LATP) is a promising solid electrolyte for all-solid-state lithium batteries due to its high ionic conductivity and excellent stability. However, the ionic conductivity of LATP needs to be improved for commercializing all-solid-state lithium battery systems. In this study, we investigate the microstructures and ionic conductivities of LATP by incorporating B2O3 glass ceramics. The smaller grain size and narrow size distribution were obtained after the introduction of B2O3 in LATP, which is attributed to the B2O3 glass on grain boundaries of LATP. Moreover, higher ionic conductivity can be obtained after B2O3 incorporation, where the optimal composition is 0.1 wt% B2O3 incorporated LATP and the ionic conductivity reaches 8.8×10-5 S/cm, more than 3 times higher value than pristine LATP. More research could be followed for having higher ionic conductivity and density by optimizing the processing conditions. This facile approach for establishing higher ionic conductivity in LATP solid electrolytes could accelerate the commercialization of all-solid-state lithium batteries.

키워드

과제정보

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451, The Competency Development Program for Industry Specialist) and by the excellent researcher support project of Kwangwoon University in 2023.

참고문헌

  1. M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). doi: https://doi.org/10.1038/451652a
  2. B. C. Melot and J. M. Tarascon, Acc. Chem. Res., 46, 1226 (2013). doi: https://doi.org/10.1021/ar300088q
  3. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). doi: https://doi.org/10.1038/35104644
  4. S Mamidi, A Gangadharan, and C. S. Sharma, Electrochim. Acta, 310, 222 (2019). doi: https://doi.org/10.1016/j.electacta.2019.04.131
  5. K. Rai and S. Kundu, Ceram. Int., 46, 23695 (2020). doi: https://doi.org/10.1016/j.ceramint.2020.06.143
  6. J. A. Dias, S. H. Santagneli, and Y. Messaddeq, J. Phys. Chem. C, 124, 26518 (2020). doi: https://doi.org/10.1021/acs.jpcc.0c07385
  7. M. Zhao, B. Q. Li, X. Q. Zhang, J. Q. Huang, and Q. Zhang, ACS Cent. Sci., 6, 1095 (2020). doi: https://doi.org/10.1021/acscentsci.0c00449
  8. A. Banerjee, X. Wang, C. Fang, E. A. Wu, and Y. S. Meng, Chem. Rev., 120, 6878 (2020). doi: https://doi.org/10.1021/acs.chemrev.0c00101
  9. H. Wang, Y. Chen, Z. D. Hood, J. K. Keum, A. S. Pandian, M. Chi, K. An, C. Liang, and M. K. Sunkara, ACS Appl. Energy Mater., 1, 7028 (2018). doi: https://doi.org/10.1021/acsaem.8b01449
  10. Z. Zhang, Y. Shao, B. Lotsch, Y. S. Hu, H. Li, J. Janek, L. F. Nazar, C. W. Nan, J. Maier, M. Armand, and L. Chen, Energy Environ. Sci., 11, 1945 (2018). doi: https://doi.org/10.1039/C8EE01053F
  11. S. Chen, D. Xie, G Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, and X. Yao, Energy Storage Mater., 14, 58 (2018). doi: https://doi.org/10.1016/j.ensm.2018.02.020
  12. J. Wu, S. Liu, F. Han, X. Yao, and C. Wang, Adv. Mater., 33, 2000751 (2020). doi: https://doi.org/10.1002/adma.202000751]
  13. M. Shoji, E. J. Cheng, T. Kimura, and K. Kanamura, J. Phys. D: Appl. Phys., 52, 103001 (2019). doi: https://doi.org/10.1088/1361-6463/aaf7e2
  14. R. C. Agrawal and G. P. Pandey, J. Phys. D: Appl. Phys., 41, 223001 (2018). doi: https://doi.org/10.1088/0022-3727/41/22/223001
  15. F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, J. Power Sources, 389, 198 (2018). doi: https://doi.org/10.1016/j.jpowsour.2018.04.022
  16. B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin, and F. Pan, Energy Storage Mater., 10, 139 (2018). doi: https://doi.org/10.1016/j.ensm.2017.08.015
  17. M. Hou, F. Liang, K. Chen, Y. Dai, and D. Xue, Nanotechnology, 31, 132003 (2020). doi: https://doi.org/10.1088/1361-6528/ab5be7
  18. B. Kang, H. Park, S. Woo, M. Kang, and A. Kim, Ceramist, 21, 349 (2018). doi: https://doi.org/10.31613/ceramist.2018.21.4.04
  19. T. Hupfer, E. C. Bucharsky, K. G. Schell, and M. J. Hoffmann, Solid State Ionics, 302, 49 (2017). doi: https://doi.org/10.1016/j.ssi.2016.10.008
  20. C. Davis and J. C. Nino, J. Am. Ceram. Soc., 98, 2422 (2015). doi: https://doi.org/10.1111/jace.13638
  21. D. H. Kothari and D. K. Kanchan, Phys. B, 501, 90 (2016). doi: https://doi.org/10.1016/j.physb.2016.08.020
  22. S. Stegmaier, K. Reuter, and C. Scheurer, Nanomaterials, 12, 2912 (2022). doi: https://doi.org/10.3390/nano12172912
  23. H. S. Jadhav, M. S. Cho, R. S. Kalubarme, J. S. Lee, K. N. Jung, K. H. Shin, and C. J. Park, J. Power Sources, 241, 502 (2013). doi: https://doi.org/10.1016/j.jpowsour.2013.04.137
  24. D. Campanella, S. Krachkovskiy, C. Faure, W. Zhu, Z. Feng, S. Savoie, G. Girard, H. Demers, A. Vijh, C. George, M. Armand, D. Belanger, and A. Paolella, Chem Electro Chem., 9, e202200984 (2022). doi: https://doi.org/10.1002/celc.202200984
  25. H. Bai, J. Hu, X. Li, Y. Duan, F. Shao, T. Kozawa, M. Naito, and J. Zhang, Ceram. Int., 44, 6558 (2018). doi: https://doi.org/10.1016/j.ceramint.2018.01.058
  26. J. S. Thokchom and B. Kumar, J. Power Sources, 195, 2870 (2010). doi: https://doi.org/10.1016/j.jpowsour.2009.11.037
  27. B. A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, J. Phys. Chem. C, 122, 194 (2018). doi: https://doi.org/10.1021/acs.jpcc.7b10582
  28. J. S. Thokchom and B. Kumar, J. Power Sources, 195, 2870 (2010). doi: https://doi.org/10.1016/j.jpowsour.2009.11.037
  29. J. S. Thokchom, C. Chen, K. M. Abraham, and B. Kumar, Solid State Ionics, 176, 1887 (2005). doi: https://doi.org/10.1016/j.ssi.2005.06.001
  30. S. G. Ling, J. Y. Peng, Q. Yang, J. L. Qiu, J. Z. Lu, and H. Li, Chin. Phys. B, 27, 038201 (2018). doi: https://doi.org/10.1088/1674-1056/27/3/038201
  31. G. Yan, S. Yu, J. F. Nonemacher, H. Tempel, H. Kungl, J. Malzbender, R. A. Eichel, and M. Krueger, Ceram. Int., 45, 14697 (2019). doi: https://doi.org/10.1016/j.ceramint.2019.04.191