• Title/Summary/Keyword: Lipschitz function

Search Result 66, Processing Time 0.021 seconds

REFLECTED DIFFUSION WITH JUMP AND OBLIQUE REFLECTION

  • Kwon, Young-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.269-278
    • /
    • 1998
  • Let ($G,\;{\upsilon}$) be a bounded smooth domain and reflection vector field on $\partial$G, which points uniformly into G. Under the condition that locally for some coordinate system, ${\mid}{\upsilon^i}{\mid}\;i\;=\;1,{\cdot},{\cdot}$,d - 1, where is constant depending on the Lipschitz constant of G, we have tightness for reflected diffusion with jump on G with reflection $\upsilon$ depending only on c. From this, we obtain some properties of L-harmonic function where L is a sum of Laplacian and integro one.

  • PDF

INVEXITY AS NECESSARY OPTIMALITY CONDITION IN NONSMOOTH PROGRAMS

  • Sach, Pham-Huu;Kim, Do-Sang;Lee, Gue-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.241-258
    • /
    • 2006
  • This paper gives conditions under which necessary optimality conditions in a locally Lipschitz program can be expressed as the invexity of the active constraint functions or the type I invexity of the objective function and the constraint functions on the feasible set of the program. The results are nonsmooth extensions of those of Hanson and Mond obtained earlier in differentiable case.

LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES

  • Nam, Kyesook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1277-1288
    • /
    • 2013
  • Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of $C^n$ in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in $R^n$. Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < ${\infty}$. In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.

THE GLOBAL OPTIMAL SOLUTION TO THE THREE-DIMENSIONAL LAYOUT OPTIMIZATION MODEL WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.313-321
    • /
    • 2004
  • In this paper we study the problem of three-dimensional layout optimization on the simplified rotating vessel of satellite. The layout optimization model with behavioral constraints is established and some effective and convenient conditions of performance optimization are presented. Moreover, we prove that the performance objective function is locally Lipschitz continuous and the results on the relations between the local optimal solution and the global optimal solution are derived.

BERGMAN SPACES, BLOCH SPACES AND INTEGRAL MEANS OF p-HARMONIC FUNCTIONS

  • Fu, Xi;Qiao, Jinjing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.481-495
    • /
    • 2021
  • In this paper, we investigate the properties of Bergman spaces, Bloch spaces and integral means of p-harmonic functions on the unit ball in ℝn. Firstly, we offer some Lipschitz-type and double integral characterizations for Bergman space ��kγ. Secondly, we characterize Bloch space ��αω in terms of weighted Lipschitz conditions and BMO functions. Finally, a Hardy-Littlewood type theorem for integral means of p-harmonic functions is established.

GENERALIZED PROXIMAL ITERATIVELY REWEIGHTED ℓ1 ALGORITHM WITH CO-COERCIVENESS FOR NONSMOOTH AND NONCONVEX MINIMIZATION PROBLEM

  • Myeongmin Kang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • The nonconvex and nonsmooth optimization problem has been widely applicable in image processing and machine learning. In this paper, we propose an extension of the proximal iteratively reweighted ℓ1 algorithm for nonconvex and nonsmooth minmization problem. We assume the co-coerciveness of a term of objective function instead of Lipschitz gradient condition, which is generalized property of Lipschitz continuity. We prove the global convergence of the proposed algorithm. Numerical results show that the proposed algorithm converges faster than original proximal iteratively reweighed algorithm and existing algorithms.

BANACH FUNCTION ALGEBRAS OF n-TIMES CONTINUOUSLY DIFFERENTIABLE FUNCTIONS ON Rd VANISHING AT INFINITY AND THEIR BSE-EXTENSIONS

  • Inoue, Jyunji;Takahasi, Sin-Ei
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1333-1354
    • /
    • 2019
  • In authors' paper in 2007, it was shown that the BSE-extension of $C^1_0(R)$, the algebra of continuously differentiable functions f on the real number space R such that f and df /dx vanish at infinity, is the Lipschitz algebra $Lip_1(R)$. This paper extends this result to the case of $C^n_0(R^d)$ and $C^{n-1,1}_b(R^d)$, where n and d represent arbitrary natural numbers. Here $C^n_0(R^d)$ is the space of all n-times continuously differentiable functions f on $R^d$ whose k-times derivatives are vanishing at infinity for k = 0, ${\cdots}$, n, and $C^{n-1,1}_b(R^d)$ is the space of all (n - 1)-times continuously differentiable functions on $R^d$ whose k-times derivatives are bounded for k = 0, ${\cdots}$, n - 1, and (n - 1)-times derivatives are Lipschitz. As a byproduct of our investigation we obtain an important result that $C^{n-1,1}_b(R^d)$ has a predual.

SUFFICIENT CONDITIONS FOR OPTIMALITY IN DIFFERENTIAL INCLUSION UNDER STATE CONSTRAINTS

  • Kim, Kyung-Eung
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.557-567
    • /
    • 2004
  • We prove the sufficient conditions for optimality in differential inclusion problem by using the value function. For this purpose, we assume at first that the value function is locally Lipschitz. Secondly, without this assumption, we use the viability theory.

Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs (미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계)

  • Song, Bongsob;Lee, Jimin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.

OPTIMALITY AND DUALITY IN NONSMOOTH VECTOR OPTIMIZATION INVOLVING GENERALIZED INVEX FUNCTIONS

  • Kim, Moon-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1527-1534
    • /
    • 2010
  • In this paper, we consider nonsmooth optimization problem of which objective and constraint functions are locally Lipschitz. We establish sufficient optimality conditions and duality results for nonsmooth vector optimization problem given under nearly strict invexity and near invexity-infineness assumptions.