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SUFFICIENT CONDITIONS FOR
OPTIMALITY IN DIFFERENTIAL
INCLUSION UNDER STATE CONSTRAINTS

Kyuncg-EunGg KM

ABSTRACT. We prove the sufficient conditions for optimality in dif-
ferential inclusion problem by using the value function. For this pur-
pose, we assume at first that the value function is locally Lipschitz.
Secondly, without this assumption, we use the viability theory.

1. Introduction

In this article, we give the sufficient conditions for optimality of the
following problem:
2/(t) € F(t,z(t)) a.e. in|[0,T],
min ¢ Y(z(T)) z(0) = &o,
g(t,x(£)) <0 in [0, 7]

For the necessary conditions, see [5] (Theorem 3.2.6, p.122). We
define the feedback map by: (for the notations, see the next section)

G(t,z) = {v € F(t,x) | D;V(t,z)(1,v) < O}.

By supposing that the value function is locally Lipschitz on the domain
of definition, we prove that z(-) is optimal for the initial data (¢g, zg) if
and only if z(-) is the solution of the differential inclusion

{ z'(t) € G(t,z(t)) ae. in [to, T
x(to) = xg.

The sufficient condition for optimality can also be formulated in the
following way. Suppose once again that the value function is locally
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Lipschitz on the domain of definition. If for almost all ¢, there exists
q(t) € R™ such that

(g(t),2'(8)) = H(t, (), 4(2)
D\ {(#620, a0, -4)), (1,200 ) 2 DV 2(0) 1,2,

then z(-) is optimal.
If the value function V is of class C, it verifies the Hamilton-Jacobi-
Bellman equation:

H(t,2(1), ~ 5 t,2(0))) = o (1,2(0).
Furthermore, if

(1), ~ 5 (62 (0)) = Ht (), =5 (6 2(0),

then z is optimal because the above conditions (1) are satisfied. This is
also the consequence of Verification Theorem ([6]). Therefore we can say
that the above conditions (1) are more general than those of Verification
Theorem.

In the above two cases, we assumed that the value function is locally
Lipschitz. Without this assumption, by using the viability theory, we
prove the sufficient conditions.

2. Optimal feedback and sufficient condition

2.1. Optimal feedback

Consider the following problem:

z'(t) € F(t,z(t)) a.e. in[0,T],
min { ¥(@(T)) ] 2(0) = &,
9(t,z(t)) <0 in [0,T]

where
F:[0,T) x R® ~ R",
o € R",
g:[0,T] xR" - R,
% :R"* - R.
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We assume that

(2)

(i) V(t,z) € [0,T) x R", F(t,x) is nonempty, convex and compact

it) Yz € R", F(-,z) is measurable

ii1) 3m € LY(0,T) such that for almost all t € [0,T], Vz € R",
WP, (s o]l < m(t)(1+ )

iv) 3k € L'(0,T) such that F(t,-) is k(t) — Lipschitz a.e. in [0, T}

| v) gand ) are continuous

We need the following notations:
Br(z) ={y€R"| |y —z|| < R},
Q={(t ) €[0,T] xR" | g(t,z) <0},

z'(t) € F(t,z(t)) a.e. in [tg, T],
S[th,T](xO) = z(-) € AC(to,T) | g(t,z(t)) <0 in [to, T, }
z(to) = o
where AC(ty, T') is the set of absolutely continuous functions from [tg, 7]
to R™.
The value function associated to the above problem is defined by: for
all (¢9,z0) € [0,T] x R™ with g(to,z0) <0,

V(to,zo) = inf{ ¥(z(T)) | z(:) € S[’;()’T](:co)}.
See [3] for the properties of the value function.

LEMMA 2.1. Assume (2). Then for all R > 0 and for all (ty,z¢) €
with ||zo|| < R, there exists Lr > 0 such that

|lz(t)| < Lr Vz € S[gtO,T](a:o) Vt € [to, T).
PROOF. Let z € S[gto 7] (@0). Then for almost all t € [to, T,
Z'(t) € F(t,z(t))
C F(t,0) +k@)|x(t)| B
where B = {z € R"|||z|| < 1}. Hence for all ¢ € [t, T,

nﬂMSMﬂ+[m@@+lummww.

We can use the Gronwall’s Lemma to end the proof. O

We can prove that the value function is lower semicontinuous and
takes its values in R U {co}. We define

Dom(V) :={(t,z) | V(t,z) € R}.
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The proof of the next proposition is elementary, but we give it for

the convenience of readers.

PROPOSITION 2.2. Assume (2). Furthermore, suppose that for all
t € [0,T), V(¢,-) is Lr—Lipschitz on Bg(0) N Dom(V (t,-)). Then for all

(to, zo) € Dom(V), for all x € S{gto’ﬂ (xo), the function
[tO’T] 3t— V(t,.’l)(t))

is absolutely continuous.

PROOF. Let z; € S[Zo,T] (zo) and tg < t; < t; < T. By dynamic

programming principle, i.e., for all ¢ € [to, T,
V(to,zo) = inf{V(t,2(t)) |z € S[gtmT] (zo)},
there exists z; € Sﬁm (z1(t1)) such that
Vit z2(t2)) < Vi(tr, 21(t)) + to — t1.

By Lemma 2.1, for all i = 1, 2, we have

2] t2
ls(tz) — zs(t)l| < / m(s)ds + / k(s)llz:(s)|ds

11 51

to t2
< / m(s)ds—i—L"won/ k(s)ds.
t1 t1
Hence,
0 V(ta, z1(t2)) — V(t1, z1(t1))

V(ta, 21(t2)) — V (t2, z2(t2)) + |t2 — 1]
Lgllz1(t2) — z2a(t2)|| + |t2 — t1]

VAN VAN VAN

IA

to to
2L / m(s)ds + Lysy / K(s)ds) + |62 — .
1 t;

La(llex(tz) = w1 (8]l + l2a(ta) = 3 (t0)l) + Itz — ta]

This implies, by the definition of absolutely continuous functions, that

t— V(t, z(t))

is absolutely continuous.

a

In general, the value function is not differentiable. Therefore we need

to define the contingent derivative (see also [1]).
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DEFINITION 2.3. Let X be a normed vector space, ¢ : X — RU{too}
be an extended function, v € X be a vector and xg € X be a vector
such that ¢(zg) # too.

The contingent epiderivative of ¢ at xg in the direction v is defined
by:

Dip(zo)(v) = liminf plwo + hv') — p(zo)

h—0t v —w h

and the contingent hypoderivative ¢ at xg in the direction v is defined
by:

Dyp(ao)(v) = limsup £EF ) = @(@0)

h—01 v —v h

REMARK. When the function ¢ is locally Lipschitz, we have

p(zo + h') — (o)

Dip(zo)(v) = limsup
h—0t v —v h
= limsup plzo + hv) = plzo)
h—O+ h
< limsup ¢(z + hv) — o(z)
h—>0+,z—%10 h

= ¢ (z0)(v).

Therefore, in Theorem 2.6 and Theorem 3.3, the use of contingent hy-
poderivative is more general than that of Clarke’s generalized directional
derivative (see [5] for the definition).

We set
V(t,z) =00 Y(t,z) & Q.

To characterize the optimal solutions, we introduce the following feed-
back map G: for all (t,z) € Q,

G(t,z) :={v € F(t,x) | D1V (t,z)(1,v) < 0}.
THEOREM 2.4. Under the hypotheses of Proposition 2.2 if

3) { z'((tto)) EZC;E)t,,a:(t)) a.e.in [tg, T
then
V(to, z0) = ¥(z(T)),

ie., z(-) is optimal.
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PRrROOF. By the definition of G, we have
z'(t) € F(t,z(t)) a.e. in [to, T
and
g(t,z(t)) <0 in [to, T).
Set
p(t) = V(t,z(t)).
Then Proposition 2.2 implies that ¢ is absolutely continuous. Hence
¢'(t) exists almost everywhere in [ty,T]. On the other hand, ¢ is non-

decreasing, i.e., ¢’(t) > 0 almost everywhere. Hence to end the proof, it
is sufficient to prove that

¢'(t) <0 ae. in [to,T].

The condition (3) implies that there exists h; — 0% and v; — 2/(t)
such that for almost all ¢ € [to, T,

0 > DiV(t,z(t)(1,2'(t)
V(t+ h,a(t) + hv) — V(t, 2(t))

= lim inf
h— 0% h
v— ()
(4) — lim V(t + hs, z(t) +£ivi) —V(t,a(t)

Since for all (¢,z) € Dom(V), V(t,x) = oo, we have for ¢ sufficiently
large,

(t + hi, z(t) + hiv;) € Dom(V).
Fix t € [to,T] such that ¢/(t) exists. Then

V(t+ h,z(t+ h)) — V(¢ z(t)

/ — : <
v () hli{(rﬁ h =0
by (4) and the Lipschitz continuity of V (¢, -). O

The converse of Theorem 2.4 is also true:
THEOREM 2.5. If z(-) is optimal for (to,xo) € Dom(V), then
z'(t) € G(t,z(t)) a.e. in [to, T).
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PROOF. Recall that V(t,2) = oo for all (t,z) ¢ Dom(V). If z(")
is optimal, then V(-,z(-)) is constant and thereby for almost all ¢ such
that «/(t) exists,

V(t+ h,z(t+ h)) = V(¢ z(t))

0 = hliféi h
V(A hya(t) + REEEEE) Cy( ()
> liminf
h—0t h
> i ing V(t+ h,z(t) + hv) — V(t,z(t))
h— 0t h
v — 2'(t)

= DyV(t,2()(1,2'(1).

Therefore
Z'(t) € G(t,z(t)) ae.

2.2. Sufficient condition for optimality

In the above section, we obtained the sufficient and necessary condi-
tions for optimality from the feedback map. In this section, we will give
the sufficient condition by using the value function and the Hamiltonian.
The Hamiltonian H : [0,7] x R" x R* — R is defined by:

H(t,z,p) = sup (p,v).
vEF(t,x)

THEOREM 2.6. Under the hypotheses of Proposition 2.2, if
z € S[’;O,T] (z0)
and for almost all t € [tp, T, there exists ¢(t) € R™ such that
(q(t),2'(t)) = H(t, (1), q(t))
)
D\ (20,00, -009). 0,200 ) = DV )10,
then
V(to, 1‘0) = ’lﬁ(z(T))’
ie., z(-) is optimal.

PROOF. By Proposition 2.2, V(- z(-)) is absolutely continuous. z(-)
is also absolutely continuous. Hence %V(t, z(t)) and 2/(t) exist almost
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everywhere. Fix a such ¢ € [to, T]. The Lipschitz continuity of the value
function and (5), we have

0 = (a2 -a0), @)

> DV(t2())(1,7'(2)
V({t+h,z(t) + hv) — V(t, 2(t))
h

= lim sup
h — 0t
v — 2/(t)
S e Y Rzt + 1) = Vit 2(6)
h—0+ h
d
= aV(t, 2(t)).

We have proved that V(-,2(-)) is decreasing. But V(-,z(:)) is nonde-
creasing for all z € Sﬁo T](xo). Therefore, V (-, 2(+)) is constant and

thereby

V(to, zo) = ¥(2(T)).
O

3. Sufficient condition without Lipschitz continuity of value
function

Let z € S[gto,T]

(2(tp) and set
p(t) = V(t,2(t), t€ [to,T].
In this section, we suppose for almost all ¢ € [tg, 7] and for all z € R"

sup ||v|| < M.
vEF (t,x)

and there exists a constant C' > 0 and p(t) € R™*! such that
(p(t), (1,8)) = DV (¢, 2(£))(1,§) V{ € MiB

and
lo@®)ll < C V€ [to,T)-

LeEMMA 3.1. There exists a constant M such that
Dip(H)(1) <M Vi€ [to, T
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PRrROOF. We have

Dro(t)(1)
— liminf VR 2+ ) — V(T 2())
h— 0t h
v—1
(6) < i V(R z(0) + RHETEO) -V 2(t))
T h—0t+ h
and
_ t+h
&—FL})L—Z(—Q = %/ 2/ (s)ds
t
1 t+h
€ - M Bds
h J;
= MB.

Hence there exists a sequence h,, — 0" and £ € M, B such that

2(t+ hyp) — 2(t)
@) n =20 ¢

Hence (6) and (7) imply that

V(t +h, 2(t) + hv) — V(t, 2(t))
I

Dip(t)(1) <  limsup
h—0*
v— &

DYV, 2(6))(1,€)

(o(t), (1,6))

C(1+ M)

M.

IAIA

O
Let E be a normed vector space and K C E. The contingent cone
Tk (x) of K at z is defined by:
.. dist(z + hv, K)
T = E|l f = 0}.
k(z)={v € E| limin 5 0}
The epigraph of f : K — R U {%oo} is defined by
Ep(f) :=={(z,A) e K xR | f(z) < A}.
We prove the next lemma by using the technique motivated by the
proof of Proposition 2.8 of [4].
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LEMMA 3.2. ¢(-) is Lipschitz in [ty, T).

ProoOF. Consider a set-valued map F : R? ~ R? such that F(r,y) =
{(1, M)} where M is the constant of Lemma 3.1. Set K = Ep(y). Note
that K is closed. Fix s > t3. Now consider the following differential
inclusion:

(r,y) € F(1,y)
®) { (1.9)(0) = (5,9(s)) € K.

By Lemma 3.1 and the fact that
Tx(r,y) D Tr(r,0(7)) Yy 2 (1),
we have for all (1,y) € K,
(1, M)

m

Ep(Dyp(7))
TK(T’ (»0(7-))
Cc TK(Ta y),

ie., for all (1,y) € K,

F(T’y) ﬂTK(’T,y) = {(laM)} 7é 0.

By Viability Theorem([1], [2], [7]), there exists a solution (7, y)(-) of (8)
such that (7,y)(r) € K for all 0 < r < T — s. On the other hand, (8)
has only a solution. Hence

(r,y) = (s+7,0(s) + Mr) € K,
ie.,
0< p(s+r)—p(s) < Mr.
[

THEOREM 3.3. If for almost all t € [tg, T, there exist q(t) € R™ and
¢(t) € R™ such that

(q(t), 2 (1)) = H{(t, 2(),a(1)),
(©) <(H<t,z<t>,q<t>) + (¢, (1), —a(t) - ¢®)), (1,z'(t>)>
2 DV (t,2(8) (1, 2(1),

then z is optimal.
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PROOF. By Lemma 3.2, ¢(-) = V/(-, 2()) is Lipschitz. Let ¢ € [to, T)
be such that the derivatives ¢/(t) and 2/(t) exist and (9) is verified. Then

0 = <(<q(t)+g(t),z’(t)),—q(t)—C(t))»(1v2’(t))>

(e 20,99 + 00,210 ~at0) - <) (1,70 )

> DV(t,2(6))(1,7 (1)
V(t+hz(t+h) - V(t,2(t))

> limsup
h—0t h
= ¢
This implies that V(- 2()) is decreasing. Because V (-, z(*)) is nonde-
creasing, V (-, 2(-)) is constant, i.e., z is optimal. O
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