BANACH FUNCTION ALGEBRAS OF \boldsymbol{n}-TIMES CONTINUOUSLY DIFFERENTIABLE FUNCTIONS ON \mathbf{R}^{d} VANISHING AT INFINITY AND THEIR BSE-EXTENSIONS

Jyunji Inoue and Sin-Ei Takahasi

Dedicated to Professor Kozo Yabuta on his 77th birth day

Abstract

In authors' paper in 2007, it was shown that the BSE-extension of $C_{0}^{1}(\mathbf{R})$, the algebra of continuously differentiable functions f on the real number space \mathbf{R} such that f and $d f / d x$ vanish at infinity, is the Lipschitz algebra $\operatorname{Lip}_{1}(\mathbf{R})$. This paper extends this result to the case of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ and $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$, where n and d represent arbitrary natural numbers. Here $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is the space of all n-times continuously differentiable functions f on \mathbf{R}^{d} whose k-times derivatives are vanishing at infinity for $k=0, \ldots, n$, and $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is the space of all $(n-1)$-times continuously differentiable functions on \mathbf{R}^{d} whose k-times derivatives are bounded for $k=0, \ldots, n-1$, and ($n-1$)-times derivatives are Lipschitz. As a byproduct of our investigation we obtain an important result that $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$ has a predual.

1. Introduction and preliminaries

In this paper \mathbf{N} represents the set of natural numbers, and \mathbf{C} the complex number field. We denote by $\left(A,\| \|_{A}\right)$ a commutative semisimple Banach algebra with Gelfand space $\Phi_{A} . C_{b}\left(\Phi_{A}\right)$ and $C_{0}\left(\Phi_{A}\right)$ denote the space of all complex-valued continuous functions on Φ_{A} which are bounded and vanishing at infinity, respectively. The Gelfand transform of an element $a \in A$ is denoted by \hat{a}, and \hat{A} represents the set of all Gelfand transforms of $a \in A . A^{*}$ denotes the dual space of A, and $\operatorname{span}\left(\Phi_{\mathrm{A}}\right)$ is the linear subspace of A^{*} generated by Φ_{A}. So, every element $p \in \operatorname{span}\left(\Phi_{A}\right)$ can be represented uniquely in the form $p=\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \varphi$, where \hat{p} is a complex-valued function on Φ_{A} with a finite $\operatorname{support} ; \operatorname{supp}(\hat{\mathrm{p}})=\left\{\varphi \in \Phi_{A}: \hat{p}(\varphi) \neq 0\right\}$. A continuous function σ on Φ_{A} is

[^0]said to be a BSE-function if there exists a nonnegative constant β such that
\[

$$
\begin{equation*}
\left|\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \sigma(\varphi)\right| \leq \beta\|p\|_{A^{*}} \quad\left(p \in \operatorname{span}\left(\Phi_{A}\right)\right) \tag{1}
\end{equation*}
$$

\]

The infimum of β in (1) is denoted by $\|\sigma\|_{B S E(A)}$. The set of all BSE-functions on Φ_{A} is denoted by $C_{B S E}\left(\Phi_{A}\right)$. Obviously, $C_{B S E}\left(\Phi_{A}\right)$ forms a linear subspace of $C_{b}\left(\Phi_{A}\right)$. It turns out that $\left\|\|_{B S E(A)}\right.$ is a complete algebra norm on $C_{B S E}\left(\Phi_{A}\right)([9])$. The Banach algebra $\left(C_{B S E}\left(\Phi_{A}\right),\| \|_{B S E(A)}\right)$ has an important subalgebra $C_{B S E}^{0}\left(\Phi_{A}\right)$. Suppose $\sigma \in C_{B S E}\left(\Phi_{A}\right)$. We denote by $\mathcal{K}\left(\Phi_{A}\right)$ the directed set of all compact subsets of Φ_{A} with inclusion order. For $K \in \mathcal{K}\left(\Phi_{A}\right)$, we put

$$
\|\sigma\|_{B S E(A), K}:=\sup _{p \in \operatorname{span}\left(\Phi_{A} \backslash K\right),\|p\|_{A^{*}} \leq 1}\left|\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \sigma(\varphi)\right|
$$

$C_{B S E}^{0}\left(\Phi_{A}\right)$ is the set of all $\sigma \in C_{B S E}\left(\Phi_{A}\right)$ satisfying $\lim _{K \in \mathcal{K}\left(\Phi_{A}\right)}\|\sigma\|_{B S E(A), K}=0$. It follows that $C_{B S E}^{0}\left(\Phi_{A}\right)$ forms a closed ideal of $C_{B S E}\left(\Phi_{A}\right)$ ([4, Corollary 3.9]).

A bounded linear operator T of A is called a multiplier of A if $T(f g)=$ $(T f) g \quad(f, g \in A)$ holds. The set of all multipliers of A is denoted by $M(A)$. $M(A)$ forms a commutative Banach algebra with respect to usual sum, scalar multiplication, the operator composition as multiplication, and the operator norm as norm. This algebra is called the multiplier algebra of A. It is well known that, for every $T \in M(A)$, there exists a unique bounded continuous function on Φ_{A}, denoted by \hat{T}, which satisfies $\widehat{T a}=\hat{T} \hat{a}(a \in A)$. We denote $\hat{M}(A)=\{\hat{T}: T \in M(A)\} . \hat{M}(A)$ forms a Banach function algebra on Φ_{A}, with $\|\hat{T}\|=\|T\|$ as norm.
Definition 1 (cf. [4, 9]). Let A be a commutative semisimple Banach algebra.
(i) A is said to be a BSE-algebra if $C_{B S E}\left(\Phi_{A}\right)=\hat{M}(A)$ holds.
(ii) A is said to be a BED-algebra if $C_{B S E}^{0}\left(\Phi_{A}\right)=\hat{A}$ holds.

Lemma 1. Suppose A is a Banach function algebra on a locally compact noncompact Hausdorff space X which satisfies the following (i), (ii), and (iii).
(i) $A \subseteq C_{0}(X)$;
(ii) A is closed under taking the complex conjugation;
(iii) If $f \in A$ and $\lambda>0$ satisfy $\lambda-f(x)>0(x \in X)$, we have $\frac{1}{\lambda-f}-\frac{1}{\lambda} \in A$. Then A is natural, that is, every $\varphi \in \Phi_{A}$ is represented, by some $x_{\varphi} \in X$, as

$$
\varphi(f)=f\left(x_{\varphi}\right) \quad(f \in A)
$$

Proof. Let $\tilde{X}=X \cup\{\infty\}$ be the one point compactification of X, and $A_{e}=$ $A \oplus \mathbf{C} e$, the unitization of A. Every $f+\mu e \in A_{e}$ is considered as a function on \tilde{X} by $(f+\mu e)(x)=f(x)+\mu$ if $x \in X$, and $=\mu$ if $x=\infty$, with $\|f+\mu e\|=\|f\|+|\mu|$ as norm. Then A_{e} is a Banach function algebra on \tilde{X} which is also closed under taking the complex conjugation. We first show that A_{e} is natural. To do this, suppose contrary that A_{e} is not natural. Then there exists $\varphi_{0} \in \Phi_{A_{e}}$ which can
not be given by any point $x \in \tilde{X}$, and $\operatorname{Ker} \varphi_{0}$ is a maximal ideal of A_{e} which dose not contain any maximal ideal of A_{e} given by an element of \tilde{X}. Therefore, for each $x \in \tilde{X}$, there exists $f_{x} \in A_{e}$ such that $\varphi_{0}\left(f_{x}\right)=0$ and $\left|f_{x}(x)\right|=1$. Choose an open neighborhood $U_{x} \subseteq \tilde{X}$ of x such that $\left|f_{x}\right|>0$ on U_{x}. Since \tilde{X} is compact, there exist a finite number of elements $x_{1}, \ldots, x_{m} \in \tilde{X}$ such that $\cup_{k=1}^{m} U_{x_{k}}=\tilde{X}$. Put $g:=\sum_{k=1}^{m} \overline{f_{x_{k}}} f_{x_{k}} \in A_{e}$, where $\overline{f_{x_{k}}}$ is the complex conjugate of $f_{x_{k}}$. Then $0<g(x) \quad(x \in \tilde{X})$. Set $\lambda:=g(\infty)$, and $f:=\lambda e-g$. Then $f \in A$ with $0<\lambda-f(x)(=g(x))$ for all $x \in X$. By (iii), it follows that $h:=\frac{1}{\lambda-f}-\frac{1}{\lambda} \in A$. Then we have $1=(\lambda-f(x))(h(x)+1 / \lambda)$ for all $x \in X$. From this we have

$$
\begin{equation*}
e=(\lambda e-f)\left(h+\frac{1}{\lambda} e\right) . \tag{2}
\end{equation*}
$$

Applying φ_{0} to (2), we obtain

$$
\begin{align*}
1 & =\varphi_{0}(\lambda e-f) \varphi_{0}\left(h+\frac{1}{\lambda} e\right) \\
& =\varphi_{0}(g) \varphi_{0}\left(h+\frac{1}{\lambda} e\right) \\
& =\left(\sum_{k=1}^{m} \varphi_{0}\left(\overline{f_{x_{k}}}\right) \varphi_{0}\left(f_{x_{k}}\right)\right) \varphi_{0}\left(h+\frac{1}{\lambda} e\right)=0 . \tag{3}
\end{align*}
$$

Thus we arrive at a contradiction (3), hence A_{e} is natural.
Next, suppose $\varphi \in \Phi_{A}$. If we put $\tilde{\varphi}(f+\lambda e)=\varphi(f)+\lambda\left(f+\lambda e \in A_{e}\right)$, then $\tilde{\varphi} \in \Phi_{A_{e}}$. Since A_{e} is natural from the above argument, there exists $x_{\varphi} \in \tilde{X}$ such that

$$
\begin{equation*}
\tilde{\varphi}(f+\lambda e)=(f+\lambda e)\left(x_{\varphi}\right) \quad\left(f+\lambda e \in A_{e}\right) . \tag{4}
\end{equation*}
$$

In this case $x_{\varphi} \neq \infty$. For, if $x_{\varphi}=\infty$, we have from (4) that $\varphi(f)=0$ $(f \in A)$, which is impossible since φ is a nonzero complex homomorphism of A. Therefore $x_{\varphi} \in X$ follows, and from (4) we have $\varphi(f)=f\left(x_{\varphi}\right) \quad(f \in A)$, which implies that A is natural.

2. Algebras of differentiable functions, $C_{b}^{n}\left(\mathbf{R}^{d}\right)$ and $C_{0}^{n}\left(\mathbf{R}^{d}\right)$

Let n, d be given natural numbers. The symbol $S\left(\mathbf{R}^{d}\right)$ represents the unit sphere in \mathbf{R}^{d}, and $e_{1}=(1,0,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{d}=(0, \ldots, 0,1)$ $\in S\left(\mathbf{R}^{d}\right)$. We use the notation $|x|=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{2}\right)^{1 / 2}, x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{R}^{d}$.

For $a=\left(a_{1}, \ldots, a_{d}\right) \in S\left(\mathbf{R}^{d}\right), T_{a}$ denotes the differential operator $T_{a}=$ $\sum_{k=1}^{d} a_{k} \frac{\partial}{\partial x_{k}}=\sum_{k=1}^{d} a_{k} T_{e_{k}}$. We denote by $C_{b}^{n}\left(\mathbf{R}^{d}\right)\left(\right.$ resp. $\left.C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)$ the space of all complex-valued functions on \mathbf{R}^{d} which are n-times continuously differentiable, and satisfy that all

$$
T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\left(=T_{e_{i_{k}}}\left(\cdots\left(T_{e_{i_{2}}}\left(T_{e_{i_{1}}} f\right)\right) \cdots\right)\right)
$$

for $1 \leq i_{1}, \ldots, i_{k} \leq d, k=0,1, \ldots, n$, are bounded (resp. vanishing at infinity).

Suppose $f \in C_{b}^{n}\left(\mathbf{R}^{d}\right)\left(\right.$ resp. $\left.C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)$. For $a^{k}=\left(a_{1}^{k}, \ldots, a_{d}^{k}\right) \in S\left(\mathbf{R}^{d}\right)$, $k=1, \ldots, n$, by applying $T_{a^{1}}, T_{a^{2}}, \ldots, T_{a^{k}}$ to f successively, we obtain

$$
\begin{align*}
T_{a^{1}, \ldots, a^{k}} f & =\sum_{1 \leq i_{1}, \ldots, i_{k} \leq d} a_{i_{1}}^{1} \cdots a_{i_{k}}^{k} T_{e_{i_{1}}, \ldots, e_{i_{k}}} f \tag{5}\\
& \in C_{b}^{n-k}\left(\mathbf{R}^{d}\right)\left(\text { resp. } C_{0}^{n-k}\left(\mathbf{R}^{d}\right)\right)
\end{align*}
$$

where $\sum_{1 \leq i_{1}, \ldots, i_{k} \leq d}$ represents the sum over all choices of i_{1}, \ldots, i_{k} in $\{1, \ldots, d\}$.
In the following, $\|f\|_{\infty}$ denotes the sup-norm of f on \mathbf{R}^{d}.
Definition 2. We define $\left\|\|_{C_{b}^{n}}\right.$ on $C_{b}^{n}\left(\mathbf{R}^{d}\right)$ by

$$
\begin{aligned}
\|f\|_{C_{b}^{n}} & =\|f\|_{\infty}+\sum_{k=1}^{n} \frac{1}{k!} \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}} f\right\|_{\infty} \\
& =\sum_{k=0}^{n} \frac{1}{k!} \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}} f\right\|_{\infty} \quad\left(f \in C_{b}^{n}\left(\mathbf{R}^{d}\right)\right) .
\end{aligned}
$$

Proposition 1.

$$
\|f\|_{C_{b}^{n}} \leq\|f\|_{n, \infty} \leq d^{n}\|f\|_{C_{b}^{n}} \quad\left(f \in C_{b}^{n}\left(\mathbf{R}^{d}\right)\right)
$$

where $\|f\|_{n, \infty}=\|f\|_{\infty}+\sum_{k=1}^{n} \frac{1}{k!} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq d}\left\|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right\|_{\infty}$.
Proof. The first inequality is a consequence of easy calculation using (5):

$$
\begin{aligned}
\|f\|_{C_{b}^{n}} & =\sum_{k=0}^{n} \frac{1}{k!} \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}} f\right\|_{\infty} \\
& =\sum_{k=0}^{n} \frac{1}{k!} \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\| \|_{1 \leq i_{1}, \ldots, i_{k} \leq d} a_{i_{1}}^{1} \cdots a_{i_{k}}^{k} T_{e_{i_{1}}, \ldots, e_{i_{k}}} f \|_{\infty} \\
& \leq \sum_{k=0}^{n} \frac{1}{k!} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq d}\left\|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right\|_{\infty}=\|f\|_{n, \infty},
\end{aligned}
$$

where $a^{j}=\left(a_{1}^{j}, \ldots, a_{d}^{j}\right) \in S\left(\mathbf{R}^{d}\right), j=1, \ldots, k, k=1, \ldots, n$.
For the second inequality, fix $k(1 \leq k \leq n)$. Then, for each $1 \leq i_{1}, \ldots, i_{k} \leq$ d, we have $\left\|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right\|_{\infty} \leq \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}} f\right\|_{\infty}$, and from this we have

$$
\begin{aligned}
\|f\|_{n, \infty} & =\|f\|_{\infty}+\sum_{k=1}^{n} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq d} \frac{1}{k!}\left\|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right\|_{\infty} \\
& \leq\|f\|_{\infty}+\sum_{k=1}^{n} d^{k} \frac{1}{k!} \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}} f\right\|_{\infty} \\
& \leq d^{n}\|f\|_{C_{b}^{n}} .
\end{aligned}
$$

By Proposition 1, two norms on $C_{b}^{n}\left(\mathbf{R}^{d}\right),\| \|_{n, \infty}$ and $\left\|\|_{C_{b}^{n}}\right.$ are equivalent, and since it is obvious that $\left\|\|_{n, \infty}\right.$ is complete, it follows that $\| \|_{C_{b}^{n}}$ is also complete.
Lemma 2. Suppose $f, g \in C_{b}^{k}\left(\mathbf{R}^{d}\right), a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)$, and $0 \leq N$. Then

$$
\begin{align*}
& \sup _{N \leq|x|}\left|T_{a^{1}, \ldots, a^{k}}(f g)(x)\right| \leq \sum_{j=0}^{k}\binom{k}{j} \\
& \sup _{b^{1}, \ldots, b j \in S\left(\mathbf{R}^{d}\right)} \sup _{N \leq|x|}\left|T_{b^{1}, \ldots, b^{j}} f(x)\right| \tag{6}\\
& \cdot \sup _{c^{1}, \ldots, c^{k-j} \in S\left(\mathbf{R}^{d}\right)} \sup _{N \leq|x|}\left|T_{c^{1}, \ldots, c^{k-j}} g(x)\right|,
\end{align*}
$$

where $\binom{k}{j}$ represents the binomial coefficient.
Proof. We observe that

$$
T_{a^{1}, \ldots, a^{k}}(f g)(x)=f(x) T_{a^{1}, \ldots, a^{k}} g(x)+\sum_{j=1}^{k-1} \sum_{(\#)} T_{a^{s_{1}, \ldots, a^{s_{j}}}} f(x) T_{a^{t_{1}}, \ldots, a^{t_{k-j}}} g(x)
$$

$$
\begin{equation*}
+\left(T_{a^{1}, \ldots, a^{k}} f(x)\right) g(x) \quad \text { for all } x \in \mathbf{R}^{d} \tag{7}
\end{equation*}
$$

where

$$
\begin{gathered}
(\#)=\left\{1 \leq s_{1} \leq \cdots \leq s_{j} \leq k, \quad 1 \leq t_{1} \leq \cdots \leq t_{k-j} \leq k,\right. \\
\left.\left\{s_{1}, \ldots, s_{j}, t_{1}, \ldots, t_{k-j}\right\}=\{1,2 \ldots, k\}\right\} .
\end{gathered}
$$

With easy calculation, we obtain (6) from (7).
Proposition 2. $\left(C_{b}^{n}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n}}\right)$ is a Banach algebra, and $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is its closed ideal.

Proof. Let $f, g \in C_{b}^{n}\left(\mathbf{R}^{d}\right)$ be given arbitrarily. By Lemma 2 with $N=0$, we have

$$
\begin{aligned}
& \|f g\|_{C_{b}^{n}} \\
& =\sum_{k=0}^{n} \frac{1}{k!} \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}}(f g)\right\|_{\infty} \\
& \leq \sum_{k=0}^{n} \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j} \sup _{b^{1}, \ldots, b^{j} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{b^{1}, \ldots, b^{j}} f\right\|_{\infty} \sup _{c^{1}, \ldots, c^{k-j} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{c^{1}, \ldots, c^{k-j}} g\right\|_{\infty} \\
& \leq \sum_{k=0}^{n} \sum_{j=0}^{k} \frac{1}{j!} \sup _{\substack{b^{1}, \ldots, b j \\
\in S\left(\mathbf{R}^{d}\right)}}\left\|T_{b^{1}, \ldots, b^{j}} f\right\|_{\infty} \frac{1}{(k-j)!} \sup _{\substack{c 1, \ldots, c^{k-j} \\
\epsilon S\left(\mathbf{R}^{d}\right)}}\left\|T_{c^{1}, \ldots, c^{k-j}} g\right\|_{\infty} \\
& \leq\left(\sum_{k=0}^{n} \frac{1}{k!} \sup _{b^{1}, \ldots, b^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{b^{1}, \ldots, b^{k}} f\right\|_{\infty}\right)\left(\sum_{k=0}^{n} \frac{1}{k!} \sup _{c^{1}, \ldots, c^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{c^{1}, \ldots, c^{k}} g\right\|_{\infty}\right)
\end{aligned}
$$

$$
=\|f\|_{C_{b}^{n}}\|g\|_{C_{b}^{n}}
$$

Thus, the norm $\left\|\|_{C_{b}^{n}}\right.$ is submultiplicative, and hence $\left(C_{b}^{n}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n}}\right)$ is a Banach algebra.

Let $\left\{f_{N}\right\}_{N}$ be a Cauchy sequence in $C_{0}^{n}\left(\mathbf{R}^{d}\right)$. Then there exists $f \in C_{b}^{n}\left(\mathbf{R}^{d}\right)$ such that $\lim _{N \rightarrow \infty}\left\|f-f_{N}\right\|_{C_{b}^{n}}=0$. Let $k(0 \leq k \leq n), 1 \leq i_{1}, \ldots, i_{k} \leq d$ and $\varepsilon>0$ be given arbitrarily. Then there exists $N_{0} \in \mathbf{N}$ such that $\left\|f-f_{N_{0}}\right\|_{C_{b}^{n}} \leq$ $\varepsilon /(2 n!)$. Choose $M>0$ such that $\sup _{M \leq|x|}\left|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f_{N_{0}}(x)\right| \leq \varepsilon / 2$. Then we have

$$
\begin{aligned}
\sup _{M \leq|x|}\left|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f(x)\right| & \leq \sup _{M \leq|x|}\left|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f_{N_{0}}(x)\right|+n!\left\|f-f_{N_{0}}\right\|_{C_{b}^{n}} \\
& \leq \varepsilon / 2+n!(\varepsilon /(2 n!))=\varepsilon .
\end{aligned}
$$

Hence $T_{e_{i_{1}}, \ldots, e_{i_{k}}} f$ vanishes at infinity for all $0 \leq k \leq n$ and $1 \leq i_{1}, \ldots, i_{k} \leq d$, that is, $f \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$. This implies that $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is closed.

Suppose $f \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ and $g \in C_{b}^{n}\left(\mathbf{R}^{d}\right)$. For any $1 \leq i_{1}, \ldots, i_{n} \leq d, 1 \leq k \leq$ $n, T_{e_{i_{1}}, \ldots, e_{i_{k}}}(f g)$ is a sum of the functions of forms

$$
f T_{e_{i_{1}}, \ldots, e_{i_{k}}} g, \quad T_{e_{j_{1}}, \ldots, e_{j_{r}}} f T_{e_{j_{r+1}}, \ldots, e_{j_{k}}} g, \quad\left(T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right) g \quad(1 \leq r \leq k-1)
$$

which belong to $C_{0}\left(\mathbf{R}^{d}\right)$, where $\left\{j_{1}, \ldots, j_{r}\right\}$ and $\left\{j_{r+1}, \ldots j_{k}\right\}$ are some subsequences of $\left\{i_{1}, \ldots, i_{k}\right\}$.

Hence $f g, T_{e_{i_{1}}, \ldots, e_{i_{k}}}(f g) \in C_{0}\left(\mathbf{R}^{d}\right)$ for $k=1, \ldots, n$. Therefore $f g \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$.

Proposition 3. $\left(C_{0}^{n}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n}}\right)$ is a natural Banach function algebra on \mathbf{R}^{d}, and by the identification of $\varphi \in \Phi_{C_{0}^{n}\left(\mathbf{R}^{d}\right)}$ with the corresponding $x_{\varphi} \in \mathbf{R}^{d}, \mathbf{R}^{d}$ is its Gelfand space and the identity map is the Gelfand transform.

From this, it follows easily that $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is regular.
Proof. Suppose $\lambda>0$, and f a real function in $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ such that $\lambda-f(x)>0$ for all $x \in \mathbf{R}^{d}$. Since $f \in C_{0}\left(\mathbf{R}^{d}\right)$, there is $\delta>0$ such that $\lambda-f(x) \geq \delta$ for all $x \in \mathbf{R}^{d}$. Put $F=\frac{1}{\lambda-f}-\frac{1}{\lambda}=\frac{f}{\lambda(\lambda-f)}$.

That $F \in C_{0}\left(\mathbf{R}^{d}\right)$ is clear. Let $1 \leq i_{1}, \ldots, i_{n} \leq d$ be arbitrarily chosen. We claim here that $T_{e_{i_{1}}, \ldots, e_{i_{k}}} F=\frac{G_{k}}{(\lambda-f)^{k+1}}$, where $G_{k} \in C_{0}^{n-k}\left(\mathbf{R}^{d}\right)$ for $k=1, \ldots, n$. Since $T_{e_{i_{1}}} F=\left(T_{e_{i_{1}}} f\right) \frac{1}{(\lambda-f)^{2}}$, the claim is true for $k=1$. If the claim is true for $k(<n)$, then it is easy to see by elementary calculation that the claim is true for $k+1$. By induction, the claim is true for $k=1, \ldots, n$, which prove that $F \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$. Since $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is closed under taking the complex conjugation, we can apply Lemma 1 , to conclude that $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is a natural Banach function algebra on \mathbf{R}^{d}.

Theorem 1. The algebra $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ has a bounded approximate identity composed of elements with compact supports.

Proof. Let $u \in C_{0}^{n}(\mathbf{R})$ be such that $\operatorname{supp}(u) \subset[-1,1]$, and $\int_{-1}^{1} u(x) d x=1$. For each $N \in \mathbf{N}$, define a function u_{N} on \mathbf{R} by

$$
u_{N}(x)=\left(\int_{-\infty}^{x} u(t+N+1) d t\right) \cdot\left(\int_{x}^{\infty} u(t-N-1) d t\right) \quad(-\infty<x<\infty)
$$

Then $u_{N} \in C_{0}^{n}(\mathbf{R})$ with $\operatorname{supp}\left(u_{N}\right) \subset[-N-2, N+2]$ and $u_{N}(x)=1(-N \leq$ $x \leq N)$. Therefore if we define

$$
u_{N}^{(d)}(x)=u_{N}(|x|) \quad\left(N \in \mathbf{N}, x \in \mathbf{R}^{d}\right)
$$

we have $u_{N}^{(d)} \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ with $\operatorname{supp}\left(u_{N}^{(d)}\right) \subseteq\left\{x \in \mathbf{R}^{d}:|x| \leq N+2\right\}$ which satisfy

$$
u_{N}^{(d)}(x)=1(|x| \leq N), \text { and }\left\|u_{N}^{(d)}\right\|_{C_{b}^{n}}=\cdots=\left\|u_{1}^{(d)}\right\|_{C_{b}^{n}} .
$$

Let $f \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ and $\varepsilon>0$ be given. There exists $N_{0} \in \mathbf{N}$ such that if $N_{0} \leq N$ then, for each $j=0, \ldots, n$, we have

$$
\begin{align*}
& \frac{1}{j!} \sup _{\substack{b_{1}^{1}, \ldots, b^{j} j \\
\in S\left(\mathbf{R}^{d}\right)}} \sup _{N \leq|x|}\left|T_{b^{1}, \ldots, b^{j}} f(x)\right| \\
\leq & \frac{1}{j!} \sup _{\substack{1 \\
b^{1}, \ldots, b^{j} \\
s\left(\mathbf{R}^{d}\right)}} \sum_{1 \leq i_{1}, \ldots, i_{j} \leq d}\left\langle b_{i_{1}}^{1} \cdots b_{i_{j}}^{j}\right\rangle \sup _{N \leq|x|}\left|T_{e_{i_{1}}, \ldots, e_{i_{j}}} f(x)\right| \\
\leq & \frac{2 \varepsilon}{(n+1)(n+2)\left\|1-u_{N_{0}}^{(d)}\right\|_{C_{b}^{n}}} \tag{8}
\end{align*}
$$

where $b^{\ell}=\left(b_{1}^{\ell}, \ldots, b_{d}^{\ell}\right), \ell=1, \ldots, j$. By (8), Lemma 2(6), and the facts that $\left(f\left(1-u_{N}^{(d)}\right)\right)(x)=0$ if $|x| \leq N,\left\|1-u_{N}^{(d)}\right\|_{C_{b}^{n}}=\cdots=\left\|1-u_{1}^{(d)}\right\|_{C_{b}^{n}}$, we have

$$
\begin{aligned}
& \left\|f-f u_{N}^{(d)}\right\|_{C_{b}^{n}} \\
= & \sum_{k=0}^{n} \frac{1}{k!} \sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)} \sup _{N \leq|x|}\left|T_{a^{1}, \ldots, a^{k}}\left(f\left(1-u_{N}^{(d)}\right)\right)(x)\right| \\
\leq & \sum_{k=0}^{n} \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j} \sup _{\substack{b^{1}, \ldots, b j \\
\in S\left(\mathbf{R}^{d}\right)}} \sup _{N \leq|x|}\left|T_{b^{1}, \ldots, b^{j}} f(x)\right| \sup _{\substack{c^{1}, \ldots, c^{k-j} \\
S\left(\mathbf{R}^{d}\right)}}\left\|T_{c^{1}, \ldots, c^{k-j}}\left(1-u_{N}^{(d)}\right)\right\|_{\infty} \\
\leq & \sum_{k=0}^{n} \sum_{j=0}^{k} \frac{1}{j!} \sup _{\substack{b^{1}, \ldots, b^{j} \\
\in S\left(\mathbf{R}^{d}\right)}} \sup _{N \leq|x|}\left|T_{b^{1}, \ldots, b^{j}} f(x)\right| \frac{\sup _{c^{1}, \ldots, c^{k-j}}^{S\left(\mathbf{R}^{d}\right)}}{}\left\|T_{c^{1}, \ldots, c^{k-j}}\left(1-u_{N}^{(d)}\right)\right\|_{\infty} \\
\leq & 2 \varepsilon-j)! \\
\leq & \sum_{k=0}^{n}(k+1) \frac{2}{(n+1)(n+2)\left\|1-u_{N_{0}}^{(d)}\right\| \|_{b}^{n}}\left\|1-u_{N}^{(d)}\right\|_{C_{b}^{n}}=\varepsilon \quad\left(N_{0} \leq N\right) .
\end{aligned}
$$

Thus $\left\{u_{N}^{(d)}\right\}_{N \in \mathbf{N}}$ is a bounded approximate identity of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ such that $\operatorname{supp}\left(u_{N}^{(d)}\right) \subset\left\{x \in \mathbf{R}^{d}:|x| \leq N+2\right\}$ for $N=1,2, \ldots$.

3. Algebras $C_{b}^{n-1,1}\left(\mathrm{R}^{d}\right)$ and $C_{0}^{n-1,1}\left(\mathrm{R}^{d}\right)$

We denote by $\operatorname{Lip}_{1}(\mathbf{R})$ (resp. $\left.\operatorname{Lip}_{1}^{0}(\mathbf{R})\right)$ the Lipschitz algebra on \mathbf{R}; that is, the space of complex-valued continuous functions on \mathbf{R} which are bounded (resp. vanishing at infinity) and satisfy

$$
\begin{aligned}
& \rho(f)=\sup _{\substack{x, y \in \mathbf{R}, x \neq y}} \frac{|f(x)-f(y)|}{|x-y|}<\infty \\
& \left(\text { resp. } \lim _{M \rightarrow \infty} \rho_{M}(f)\left(=\sup _{\substack{x, y \in \mathbf{R}, x \neq y \\
M \leq|x|,|y|}} \frac{|f(x)-f(y)|}{|x-y|}\right)=0\right) .
\end{aligned}
$$

With $\|f\|_{L i p_{1}}=\|f\|_{\infty}+\rho(f)$ as norm, the space $\operatorname{Lip}_{1}(\mathbf{R})$ becomes a Banach function algebra on \mathbf{R}.

It is shown in [4, p. 123] that the BSE-extension of $C_{0}^{1}(\mathbf{R})$ is $\operatorname{Lip}_{1}(\mathbf{R})$, and that $\operatorname{Lip} p_{1}^{0}(\mathbf{R})$ is its closed ideal, which itself is a natural Banach function algebra on \mathbf{R}. Moreover it is shown that $C_{B S E}^{0}\left(\Phi_{C_{0}^{1}(\mathbf{R})}\right)=\operatorname{Lip}_{1}^{0}(\mathbf{R})$ and $M\left(C_{0}^{1}(\mathbf{R})\right)=$ $C_{b}^{1}(\mathbf{R})$.
Definition 3. For $f \in C_{b}\left(\mathbf{R}^{d}\right)$, we write $\rho(f)=\sup _{x, y \in \mathbf{R}^{d}, x \neq y} \frac{|f(y)-f(x)|}{|y-x|}$, and

$$
\rho[f](x)=\sup _{y \in \mathbf{R}^{d}, x \neq y} \frac{|f(y)-f(x)|}{|y-x|} \quad\left(x \in \mathbf{R}^{d}\right)
$$

We put

$$
\begin{aligned}
\operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right) & :=\left\{f \in C_{b}\left(\mathbf{R}^{d}\right): \rho(f)<\infty\right\}, \text { and } \\
\operatorname{Lip}_{1}^{0}\left(\mathbf{R}^{d}\right) & :=\left\{f \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right): f \text { and } \rho[f] \text { vanish at infinity }\right\} .
\end{aligned}
$$

One can verify easily that the definitions of $\operatorname{Lip}_{1}^{0}(\mathbf{R})$ in [4] and in Definition 3 above are consistent.

Note that, for $f, g \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$ we have

$$
\begin{align*}
\rho[f g](x) & =\sup _{y \in \mathbf{R}^{d}, y \neq x} \frac{|f(y) g(y)-f(x) g(x)|}{|y-x|} \\
& \leq \sup _{y \in \mathbf{R}^{d}, y \neq x}\left[|g(y)| \frac{|f(y)-f(x)|}{|y-x|}+|f(x)| \frac{|g(y)-g(x)|}{|y-x|}\right] \\
& \leq \rho[f](x)\|g\|_{\infty}+|f(x)| \rho(g) \quad\left(x \in \mathbf{R}^{d}\right) . \tag{9}
\end{align*}
$$

Lemma 3. (i) For $f \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$, we have $\rho(f)=\sup _{x \in \mathbf{R}^{d}} \rho[f](x)$.
(ii) For $f \in C_{b}^{1}\left(\mathbf{R}^{d}\right)$, we have $\rho(f)=\sup _{a \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a} f\right\|_{\infty}$.
(iii) For $\alpha, \beta \in \mathbf{C}$, and $f, g \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$, we have

$$
\rho[\alpha f+\beta g](x) \leq|\alpha| \rho[f](x)+|\beta| \rho[g](x) \quad\left(x \in \mathbf{R}^{d}\right)
$$

(iv) $\operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$ is an algebra and $\operatorname{Lip} p_{1}^{0}\left(\mathbf{R}^{d}\right)$ is its ideal.

Proof. (i) Suppose $f \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$. For any $x, y \in \mathbf{R}^{d}$ with $x \neq y$, we have

$$
\begin{equation*}
\frac{|f(y)-f(x)|}{|y-x|} \leq \rho[f](x) . \tag{10}
\end{equation*}
$$

From (10), we have $\rho(f) \leq \sup _{x \in \mathbf{R}^{d}} \rho[f](x)$. Conversely, it is easy to see that $\rho[f](x) \leq \rho(f), x \in \mathbf{R}^{d}$ and hence $\sup _{x \in \mathbf{R}^{d}} \rho[f](x) \leq \rho(f)$.
(ii) Suppose $f \in C_{b}^{1}\left(\mathbf{R}^{d}\right)$. For any $x \in \mathbf{R}^{d}$ and $a \in S\left(\mathbf{R}^{d}\right)$,

$$
\begin{aligned}
\left|T_{a} f(x)\right| & =\lim _{\substack{\mathcal{O} \neq h \in \mathbf{R}, h \rightarrow 0}} \frac{|f(x+h a)-f(x)|}{|h|} \\
& =\lim _{\substack{0 \neq h \in \mathbf{R}, h \rightarrow 0}} \frac{|f(x+h a)-f(x)|}{|(x+h a)-x|} \leq \rho[f](x),
\end{aligned}
$$

and hence

$$
\begin{equation*}
\sup _{a \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a} f\right\|_{\infty} \leq \rho(f) \tag{11}
\end{equation*}
$$

On the other hand, for any $x, y \in \mathbf{R}^{d}$ with $x \neq y$, if we put $a=\frac{y-x}{|y-x|}$ and $h=|y-x|$, then $a \in S\left(\mathbf{R}^{d}\right)$ and

$$
\frac{|f(y)-f(x)|}{|y-x|}=\frac{|f(x+h a)-f(x)|}{|h|}=\left|T_{a} f(x+\theta h a)\right|
$$

for some $0<\theta<1$, and hence

$$
\begin{equation*}
\rho(f) \leq \sup _{a \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a} f\right\|_{\infty} \tag{12}
\end{equation*}
$$

From (11) and (12), we have (ii).
(iii) We can get this inequality by straightforward calculation.
(iv) This follows easily from (9).

Definition 4. Let n, d be given natural numbers. We define;

$$
\begin{align*}
& C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right):=\left\{f \in C_{b}^{n-1}\left(\mathbf{R}^{d}\right): T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right), 1 \leq i_{1}, \ldots, i_{n-1} \leq d\right\}, \\
& C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right):=\left\{f \in C_{0}^{n-1}\left(\mathbf{R}^{d}\right): T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f \in \operatorname{Lip}_{1}^{0}\left(\mathbf{R}^{d}\right), 1 \leq i_{1}, \ldots, i_{n-1} \leq d\right\}, \\
& \|f\|_{C_{b}^{n-1,1}}:=\|f\|_{C_{b}^{n-1}}+\frac{1}{n!} \sup _{a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)} \rho\left(T_{a^{1}, \ldots, a^{n-1}} f\right) \\
& 13) \tag{13}\\
& \quad\left(f \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)\right) .
\end{align*}
$$

In particular, we have $C_{b}^{0,1}\left(\mathbf{R}^{d}\right)=\operatorname{Lip}\left(\mathbf{R}^{d}\right)$ and $C_{0}^{0,1}\left(\mathbf{R}^{d}\right)=\operatorname{Lip} p_{1}^{0}\left(\mathbf{R}^{d}\right)$.
Proposition 4. $\|f\|_{C_{b}^{n-1,1}} \leq\|f\|_{n-1, \infty, \rho} \leq d^{n-1}\|f\|_{C_{b}^{n-1,1}}\left(f \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)$, where $\|f\|_{n-1, \infty, \rho}=\|f\|_{n-1, \infty}+\frac{1}{n!} \sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d} \rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right)$.

Proof. Suppose $f \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$. Let $a^{j}=\left(a_{1}^{j}, \ldots, a_{d}^{j}\right) \in S\left(\mathbf{R}^{d}\right), j=1, \ldots$, $n-1$ be given arbitrarily. By Lemma 3 and (5), we have

$$
\begin{align*}
\rho\left(T_{a^{1}, \ldots, a^{n-1}} f\right) & =\sup _{x \in \mathbf{R}^{d}} \rho\left[T_{a^{1}, \ldots, a^{n-1}} f\right](x) \\
& \leq \sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d}\left|a_{i_{1}}^{1} \cdots a_{i_{n-1}}^{n-1}\right| \sup _{x \in \mathbf{R}^{d}} \rho\left[T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right](x) \\
& \leq \sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d} \rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right) . \tag{14}
\end{align*}
$$

Therefore, by Proposition 1, (13), and (14), we obtain

$$
\begin{aligned}
\|f\|_{C_{b}^{n-1,1}} & =\|f\|_{C_{b}^{n-1}}+\frac{1}{n!} \sup _{a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)} \rho\left(T_{a^{1}, \ldots, a^{n-1}} f\right) \\
& \leq\|f\|_{n-1, \infty}+\frac{1}{n!} \sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d} \rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right)=\|f\|_{n-1, \infty, \rho} .
\end{aligned}
$$

Next, we consider the second inequality. From Proposition 1, we have

$$
\begin{equation*}
\|f\|_{n-1, \infty} \leq d^{n-1}\|f\|_{C_{b}^{n-1}} \tag{15}
\end{equation*}
$$

Further, since $\rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right) \leq \sup _{a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)} \rho\left(T_{a^{1}, \ldots, a^{n-1}} f\right)$ for each $1 \leq i_{1}, \ldots, i_{n-1} \leq d$, we have

$$
\begin{equation*}
\sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d} \rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right) \leq d^{n-1} \sup _{a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)} \rho\left(T_{a^{1}, \ldots, a^{n-1}} f\right) . \tag{16}
\end{equation*}
$$

From (15), (16), and the definitions of $\|f\|_{n-1, \infty, \rho}$ and $\|f\|_{C_{b}^{n-1,1}}$, we get the desired result.

Proposition 4 shows that the two norms $\left\|\|_{n-1, \infty, \rho}\right.$ and $\| \|_{C_{b}^{n-1,1}}$ are equivalent. Obviously $\left\|\|_{n-1, \infty, \rho}\right.$ is complete, and hence $\| \|_{C_{b}^{n-1,1}}$ is also complete.

Lemma 4. (i) For $f \in C_{b}^{n}\left(\mathbf{R}^{d}\right)$ and $a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)$, we have

$$
\rho\left(T_{a^{1}, \ldots, a^{k}} f\right)=\sup _{a \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}, a} f\right\|_{\infty}, k=1, \ldots, n-1,
$$

hence $T_{a^{1}, \ldots, a^{k}} f \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$.
(ii) If $f \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ and $1 \leq i_{1}, \ldots, i_{n-1} \leq d$, then $T_{e_{i_{1}}, \ldots, e_{i_{k}}} f \in \operatorname{Lip} p_{1}^{0}\left(\mathbf{R}^{d}\right)$ for $k=0,1, \ldots, n-1$.

Proof. (i) Obviously, (i) follows from Lemma 3(ii).
(ii) If $n=1$, the assertion is trivial. So we consider the case $2 \leq n$. Suppose $f \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$. Then $T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f \in C_{0}^{0,1}\left(\mathbf{R}^{d}\right)=\operatorname{Lip} 1_{1}^{0}\left(\mathbf{R}^{d}\right)$ from the definition of $f \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$.

Let $\varepsilon>0$ be given. For each $k(0 \leq k \leq n-2), T_{e_{i_{1}}, \ldots, e_{i_{k}}} f$ belongs to $C_{0}^{1}\left(\mathbf{R}^{d}\right)$, so by Lemma 3(ii), we have

$$
\rho\left(T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right)=\sup _{a \in S\left(\mathbf{R}^{d}\right)}\left\|T_{e_{i_{1}}, \ldots, e_{i_{k}}, a} f\right\|_{\infty} \leq(k+1)!\|f\|_{C_{b}^{k+1}}<\infty .
$$

Therefore $\rho\left[T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right]$ is bounded by Lemma 3(i). To show that $\rho\left[T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right]$ vanishes at infinity, choose $M>0$, by (5), such that

$$
\begin{equation*}
\sup _{a \in S\left(\mathbf{R}^{d}\right)} \sup _{M \leq|x|}\left|T_{e_{i_{1}}, \ldots, e_{i_{k}}, a} f(x)\right| \leq \varepsilon, \quad 2\left\|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right\|_{\infty} \leq M \varepsilon \tag{17}
\end{equation*}
$$

Then, if $2 M \leq|x|$ and $y \in \mathbf{R}^{d}$ with $y \neq x$, we put $a=\frac{y-x}{|y-x|}, h=|y-x|$, then for some $0<\theta<1$,

$$
\frac{\left|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f(y)-T_{e_{i_{1}}, \ldots, e_{i_{k}}} f(x)\right|}{|y-x|} \leq \begin{cases}\left|T_{e_{i_{1}}, \ldots, e_{i_{k}}, a} f(x+\theta h a)\right| & \text { if } M>h \tag{18}\\ 2\left\|T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right\|_{\infty} / M & \text { if } M \leq h .\end{cases}
$$

From (17) and (18), we have $\sup _{2 M \leq|x|} \rho\left[T_{e_{i_{1}}, \ldots, e_{i_{k}}} f\right](x) \leq \varepsilon$, which implies that $T_{e_{i_{1}}, \ldots, e_{i_{k}}} f \in \operatorname{Lip} p_{1}^{0}\left(\mathbf{R}^{d}\right)$.

Corollary 1. The algebra $C_{b}^{n}\left(\mathbf{R}^{d}\right)$ is contained in $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$, and the identity map of $\left(C_{b}^{n}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n}}\right)$ into $\left(C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n-1,1}}\right)$ is an isometry.

Proof. Obviously, this follows from Lemma 4(i).
In the following Lemma 5 and Proposition 5, we use the following notations;

$$
\begin{aligned}
& \alpha_{0}(f)=\|f\|_{\infty}, \quad \alpha_{k}(f)=\sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)}\left\|T_{a^{1}, \ldots, a^{k}} f\right\|_{\infty}, \quad \text { and } \\
& \beta_{0}(f)=\rho(f), \quad \beta_{k}(f)=\sup _{a^{1}, \ldots, a^{k} \in S\left(\mathbf{R}^{d}\right)} \rho\left(T_{a^{1}, \ldots, a^{k}} f\right) \quad(1 \leq k \leq n-1) .
\end{aligned}
$$

Lemma 5. Suppose $f, g \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$. Then we have
(i) $\alpha_{k}(f g) \leq \sum_{j=0}^{k}\binom{k}{j} \alpha_{j}(f) \alpha_{k-j}(g)(0 \leq k \leq n-1)$.
(ii) $\beta_{n-1}(f g) \leq \sum_{k=0}^{n-1}\binom{n-1}{k}\left(\alpha_{k}(f) \beta_{n-1-k}(g)+\beta_{k}(f) \alpha_{n-1-k}(g)\right)$.

Proof. (i) By Lemma 2(6) with $N=0$, the inequality follows.
(ii) For any choice of $a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)$, we have

$$
\begin{equation*}
T_{a^{1}, \ldots, a^{n-1}}(f g)=\sum_{k=0}^{n-1} \sum_{(\#)} T_{a^{s_{1}}, \ldots, a^{s_{k}}} f T_{a^{t_{1}}, \ldots, a^{t_{n-1-k}}} g, \tag{19}
\end{equation*}
$$

where $(\#)=\left\{1 \leq s_{1} \leq \cdots \leq s_{k} \leq n-1,1 \leq t_{1} \leq \cdots \leq t_{n-1-k} \leq n-1\right.$,

$$
\left.\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{n-1-k}\right\}=\{1, \ldots, n-1\}\right\}
$$

Operating ρ to the both sides of the equation (19), we have (cf. (9))

$$
\begin{align*}
\rho\left(T_{a^{1}, \ldots, a^{n-1}}(f g)\right) \leq \sum_{k=0}^{n-1} \sum_{(\#)} & \left(\left\|T_{a^{s_{1}}, \ldots, a^{s_{k}}} f\right\|_{\infty} \rho\left(T_{a^{t_{1}}, \ldots, a^{t_{n-1-k}}} g\right)\right. \\
& \left.+\rho\left(T_{a^{s_{1}}, \ldots, a^{s_{k}}} f\right)\left\|T_{a^{t_{1}}, \ldots, a^{t_{n-1-k}}} g\right\|_{\infty}\right) . \tag{20}
\end{align*}
$$

Taking the supremum in (20) over all choices of $a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)$, we obtain (ii).

Proposition 5. $\left(C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n-1,1}}\right)$ is a Banach algebra, and $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is its closed ideal.
Proof. In the following calculation, we use the relations $\beta_{k}(h)=\alpha_{k+1}(h)$ for $h \in C_{b}^{k+1}\left(\mathbf{R}^{d}\right), k=0, \ldots, n-2$ (cf. Lemma 4(i)). Let $f, g \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$. Then by Lemma 5 and the formula $\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}$, we have

$$
\begin{aligned}
\|f g\|_{C_{b}^{n-1,1}}= & \sum_{k=0}^{n-1} \frac{1}{k!} \alpha_{k}(f g)+\frac{1}{n!} \beta_{n-1}(f g) \\
\leq & \sum_{k=0}^{n-1} \sum_{j=0}^{k} \frac{1}{k!}\binom{k}{j} \alpha_{j}(f) \alpha_{k-j}(g) \\
& +\frac{1}{n!}\left(\sum_{k=0}^{n-1}\binom{n-1}{k} \alpha_{k}(f) \beta_{n-1-k}(g)+\binom{n-1}{k} \beta_{k}(f) \alpha_{n-1-k}(g)\right) \\
= & \sum_{k=0}^{n-1} \sum_{j=0}^{k} \frac{1}{k!}\binom{k}{j} \alpha_{j}(f) \alpha_{k-j}(g)+\frac{1}{n!}\|f\|_{\infty} \beta_{n-1}(g) \\
& +\frac{1}{n!} \sum_{k=1}^{n-1}\binom{n-1}{k} \alpha_{k}(f) \alpha_{n-k}(g) \\
& +\frac{1}{n!} \sum_{k=0}^{n-2}\binom{n-1}{k} \alpha_{k+1}(f) \alpha_{n-1-k}(g)+\frac{1}{n!} \beta_{n-1}(f)\|g\|_{\infty} \\
= & \sum_{k=0}^{n-1} \sum_{j=0}^{k} \frac{1}{j!} \alpha_{j}(f) \frac{1}{(k-j)!} \alpha_{k-j}(g)+\frac{1}{n!}\|f\|_{\infty} \beta_{n-1}(g) \\
& +\frac{1}{n!}\left(\sum_{k=1}^{n-1}\left(\binom{n-1}{k}+\binom{n-1}{k-1}\right) \alpha_{k}(f) \alpha_{n-k}(g)\right) \\
& +\frac{1}{n!} \beta_{n-1}(f)\|g\|_{\infty} \\
= & \sum_{k=0}^{n-1} \sum_{j=0}^{k} \frac{1}{j!} \alpha_{j}(f) \frac{1}{(k-j)!} \alpha_{k-j}(g)+\frac{1}{n!}\|f\|_{\infty} \beta_{n-1}(g)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=1}^{n-1} \frac{1}{k!} \alpha_{k}(f) \frac{1}{(n-k)!} \alpha_{n-k}(g)+\frac{1}{n!} \beta_{n-1}(f)\|g\|_{\infty} \\
\leq & \left(\sum_{k=0}^{n-1} \frac{1}{k!} \alpha_{k}(f)+\frac{1}{n!} \beta_{n-1}(f)\right)\left(\sum_{k=0}^{n-1} \frac{1}{k!} \alpha_{k}(g)+\frac{1}{n!} \beta_{n-1}(g)\right) \\
= & \|f\|_{C_{b}^{n-1,1}}\|g\|_{C_{b}^{n-1,1}} .
\end{aligned}
$$

Thus $\left\|\|_{C_{b}^{n-1,1}}\right.$ is submultiplicative, hence $\left(C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n-1,1}}\right)$ is a Banach algebra.

Let $\left\{f_{N}\right\}_{N}$ be a Cauchy sequence in $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$. Then there exists $f \in$ $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$ such that $\lim _{N \rightarrow \infty}\left\|f-f_{N}\right\|_{C_{b}^{n-1,1}}=0$. Since

$$
\left\|f-f_{N}\right\|_{C_{b}^{n-1}} \leq\left\|f-f_{N}\right\|_{C_{b}^{n-1,1}} \rightarrow 0 \quad(N \rightarrow \infty)
$$

we have $f \in C_{0}^{n-1}\left(\mathbf{R}^{d}\right)$ from Proposition 2 . Let $1 \leq i_{1}, \ldots, i_{n-1} \leq d$ and $\varepsilon>0$ be given arbitrarily. Let $N_{0} \in \mathbf{N}$ be such that $\left\|f-f_{N_{0}}\right\|_{C_{b}^{n-1,1}} \leq \varepsilon /(2 n!)$, and choose $M>0$ such that $\sup _{M \leq|x|} \rho\left[T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f_{N_{0}}\right](x) \leq \varepsilon / 2$. Then we have

$$
\begin{aligned}
\sup _{M \leq|x|} \rho\left[T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right](x) & \leq \sup _{M \leq|x|} \rho\left[T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f_{N_{0}}\right](x)+n!\left\|f_{N_{0}}-f\right\|_{C_{b}^{n-1,1}} \\
& \leq \varepsilon / 2+n!(\varepsilon /(2 n!))=\varepsilon .
\end{aligned}
$$

Thus $\rho\left[T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right]$ vanishes at infinity. This implies that $f \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ and hence $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is closed.

Suppose $f \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ and $g \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$. By Proposition $2, f g$ belongs to $C_{0}^{n-1}\left(\mathbf{R}^{d}\right)$. Let $1 \leq i_{1}, \ldots, i_{n-1} \leq d$ be arbitrarily chosen. Then $T_{e_{i_{1}}, \ldots, e_{i_{n-1}}}(f g)$ is a sum of the functions in the following (a) or (b);
(a) $T_{e_{j_{1}}, \ldots, e_{j_{k}}} f T_{e_{j_{k+1}}, \ldots, e_{j_{n-1}}} g$ with $1 \leq k \leq n-2,1 \leq j_{1} \leq \cdots \leq j_{k} \leq n-1$, $1 \leq j_{k+1} \leq \cdots \leq j_{n-1} \leq n-1$ and $\left\{j_{1}, \ldots, j_{n-1}\right\}=\{1, \ldots, n-1\}$,
(b) $f T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} g,\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right) g$.
$\operatorname{In}(\mathrm{a}), T_{e_{j_{1}}, \ldots, e_{j_{k}}} f \in \operatorname{Lip} 1_{1}^{0}\left(\mathbf{R}^{d}\right)$ and $T_{e_{j+1}, \ldots, e_{j_{n-1}}} g \in \operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$ from Lemma 4, hence functions in (a) belong to $\operatorname{Lip}_{1}^{0}\left(\mathbf{R}^{d}\right)$ from Lemma 3(iv). That functions in (b) belong to $L i p_{1}^{0}\left(\mathbf{R}^{d}\right)$ follows from Definition 4 and Lemma 3(iv).

Therefore $T_{e_{i_{1}}, \ldots, e_{i_{n-1}}}(f g) \in \operatorname{Lip} p_{1}^{0}\left(\mathbf{R}^{d}\right)$ for all choices of $1 \leq i_{1}, \ldots, i_{n-1} \leq d$, and hence $f g \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ follows.

Proposition 6. $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is a natural Banach function algebra on \mathbf{R}^{d}, and by the identification of $\varphi \in \Phi_{C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)}$ with the corresponding $x_{\varphi} \in \mathbf{R}^{d}, \mathbf{R}^{d}$ is its Gelfand space and the identity map is the Gelfand transform.

From this, it follows easily that $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is regular.
Proof. Suppose $f \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ and $\lambda>0$ such that $\lambda-f(x)>0$ for all $x \in \mathbf{R}^{d}$. Since $f \in C_{0}^{n-1}\left(\mathbf{R}^{d}\right)$, there exists $\delta>0$ such that $\lambda-f(x) \geq \delta$ for all
$x \in \mathbf{R}^{d}$. Put $F=\frac{1}{\lambda-f}-\frac{1}{\lambda}$. Then it follows from the proof of Proposition 3 that $F=\frac{f}{\lambda(\lambda-f)} \in C_{0}^{n-1}\left(\mathbf{R}^{d}\right)$.

We claim that, for any choice of $i_{1}, \ldots, i_{n-1} \in\{1, \ldots, d\}$, we have $T_{e_{i_{1}}, \ldots, e_{i_{k}}} F$ $=\frac{G_{k}}{(\lambda-f)^{k+1}}$ with $G_{k} \in C_{0}^{n-1-k, 1}\left(\mathbf{R}^{d}\right)$ for $k=1, \ldots, n-1$. Since $T_{e_{i_{1}}} F=$ $T_{e_{i_{1}}} f \frac{1}{(\lambda-f)^{2}}$, the claim is true for $k=1$. If the claim is true for $k(<n-1)$, then it is easy to see by elementary calculation that the claim is true for $k+1$. By induction we can conclude that the claim is true for $k=1,2, \ldots, n-1$; in particular

$$
\begin{equation*}
T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} F=\frac{1}{(\lambda-f)^{n}} G_{n-1} \tag{21}
\end{equation*}
$$

From (21) we have that

$$
T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} F \in C_{0}^{0,1}\left(\mathbf{R}^{d}\right)=\operatorname{Lip} 1_{1}^{0}\left(\mathbf{R}^{d}\right)
$$

Since $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is closed under taking the complex conjugation, we can apply Lemma 1 to conclude that $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is natural.

Lemma 6. Suppose $f \in \operatorname{Lip} p_{1}^{0}\left(\mathbf{R}^{d}\right)$, and $\left\{e_{N}\right\}_{N=1}^{\infty}$ is a bounded sequence in $L^{L i p_{1}}\left(\mathbf{R}^{d}\right)$ such that $e_{N}(x)=0$ if $|x| \leq N$.

Then, for given $\varepsilon>0$, there exists $N_{0} \in \mathbf{N}$ such that $\rho\left(f e_{N}\right) \leq \varepsilon\left(N_{0} \leq N\right)$, that is, $\rho\left(f e_{N}\right)$ vanishes as $N \rightarrow \infty$.
Proof. Put $\beta=\sup _{N \in \mathbf{N}}\left(\left\|e_{N}\right\|_{\infty}+\rho\left(e_{N}\right)\right)<\infty$. Choose $N_{0} \in \mathbf{N}$ such that

$$
\begin{align*}
\max \left\{\sup _{N_{0} / 2 \leq|x|}|f(x)|, \sup _{N_{0} / 2 \leq|x|} \rho[f](x)\right\} & \leq \varepsilon /(2 \beta) \tag{22}\\
3 \beta\|f\|_{\infty} & \leq\left(N_{0} / 2\right) \varepsilon \tag{23}
\end{align*}
$$

Suppose $N_{0} \leq N$. Then, for any $x, y \in \mathbf{R}^{d}, x \neq y$, we have

$$
\begin{aligned}
& \frac{\left|f(y) e_{N}(y)-f(x) e_{N}(x)\right|}{|y-x|} \\
\leq & \left|e_{N}(y)\right| \frac{|f(y)-f(x)|}{|y-x|}+|f(x)| \frac{\left|e_{N}(y)-e_{N}(x)\right|}{|y-x|} \\
\leq & \begin{cases}0 \cdot \frac{|f(y)-f(x)|}{|y-x|}+|f(x)| \frac{|0-0|}{|y-x|}=0 & \text { if }|x|<N / 2,|y| \leq N, \\
\beta \cdot \frac{2||f| l \infty}{N / 2}+\|f\|_{\infty} \frac{\beta}{N / 2} \leq \varepsilon & \text { if }|x|<N / 2, N<|y| \text { (from (23)), } \\
0 \cdot \frac{|f(y)-f(x)|}{|y-x|}+|f(x)| \beta \leq \varepsilon / 2 & \text { if } N / 2 \leq|x|,|y| \leq N \text { (from (22)), }, \\
\beta \rho[f](x)+|f(x)| \beta \leq \varepsilon & \text { if } N / 2 \leq|x|, N<|y| \text { (from (22)). }\end{cases}
\end{aligned}
$$

Therefore $\rho\left(f e_{N}\right) \leq \varepsilon$ if $N_{0} \leq N$, that is, $\lim _{N \rightarrow \infty} \rho\left(f e_{N}\right)=0$.
Theorem 2. The algebra $\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right),\| \|_{C_{b}^{n-1,1}}\right)$ has a bounded approximate identity composed of elements with compact supports.

Proof. We will show that the bounded approximate identity $\left\{u_{N}^{(d)}\right\}$ for $C_{0}^{n}\left(\mathbf{R}^{d}\right)$, which is defined in Theorem 1, is also valid as a bounded approximate identity for $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$.

That $\left\{u_{N}^{(d)}\right\}$ is a bounded sequence in $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is clear by Corollary 1. Let $f \in C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ be given arbitrarily. Then we have

$$
\begin{aligned}
& \left\|f-f u_{N}^{(d)}\right\|_{C_{b}^{n-1,1}} \\
= & \left\|f-f u_{N}^{(d)}\right\|_{C_{b}^{n-1}}+\frac{1}{n!} \sup _{\substack{a^{1} 1, \ldots, a^{n-1} \\
\in S\left(\mathbf{R}^{d}\right)}} \rho\left(T_{a^{1}, \ldots, a^{n-1}}\left(f\left(1-u_{N}^{(d)}\right)\right)\right) \\
\leq & \left\|f-f u_{N}^{(d)}\right\|_{C_{b}^{n-1}} \\
& +\frac{1}{n!} \sup _{\substack{a^{1}, \ldots, a^{n-1} \\
\in S\left(\mathbf{R}^{d}\right)}} \sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d}\left|a_{i_{1}}^{1} \cdots a_{i_{n-1}}^{n-1}\right| \rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}}\left(f\left(1-u_{N}^{(d)}\right)\right)\right)
\end{aligned}
$$

where $a^{i}=\left(a_{1}^{i}, \ldots, a_{d}^{i}\right), i=1, \ldots, n-1$,

$$
\begin{aligned}
& \leq\left\|f-f u_{N}^{(d)}\right\|_{C_{b}^{n-1}}+\frac{1}{n!} \sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d} \rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}}\left(f\left(1-u_{N}^{(d)}\right)\right)\right) \\
& \leq\left\|f-f u_{N}^{(d)}\right\|_{C_{b}^{n-1}}
\end{aligned}
$$

$$
\begin{equation*}
+\frac{1}{n!} \sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq d} \sum_{k=0}^{n-1} \sum_{(\#)} \rho\left(T_{e_{i_{s_{1}}}, \ldots, e_{i_{s}}} f \cdot T_{e_{i_{t_{1}}}, \ldots, e_{i_{t_{n-1}}}}\left(1-u_{N}^{(d)}\right)\right), \tag{24}
\end{equation*}
$$

where

$$
\begin{gathered}
(\#)=\left\{1 \leq s_{1} \leq \cdots \leq s_{k} \leq n-1,1 \leq t_{1} \leq \cdots \leq t_{n-1-k} \leq n-1,\right. \\
\left.\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{n-1-k}\right\}=\{1,2, \ldots, n-1\}\right\} .
\end{gathered}
$$

In the last line of (24), for $1 \leq i_{1}, \ldots, i_{n-1} \leq d, 0 \leq k \leq n-1$, we have

$$
T_{e_{i_{s_{1}}}, \ldots, e_{i_{s_{k}}}} f \in \operatorname{Lip} p_{1}^{0}\left(\mathbf{R}^{d}\right)
$$

by Lemma 4(ii), and $\left\{T_{e_{i_{1}}, \ldots, e_{i_{t_{n-1-k}}}}\left(1-u_{N}^{(d)}\right)\right\}_{N=1}^{\infty}$ is a sequence of bounded functions in $\operatorname{Lip}_{1}\left(\mathbf{R}^{d}\right)$ which satisfy $T_{e_{i_{1}}, \ldots, e_{i_{t_{n-1}-k}}}\left(1-u_{N}^{(d)}\right)(x)=0$ if $|x| \leq N$, so we have by Lemma 6 that $\rho\left(T_{e_{i_{1}}, \ldots, e_{i_{k}}} f \cdot T_{e_{i_{k+1}}, \ldots, e_{i_{n-1}}}\left(1-u_{N}^{(d)}\right)\right)$ vanishes as $N \rightarrow \infty$. Of course, $\left\|f-f u_{N}^{(d)}\right\|_{C_{b}^{n-1}}$ vanishes as $N \rightarrow \infty$ by Theorem 1 . Therefore in the last line of (24) each term vanishes as $N \rightarrow \infty$. Then (24) implies that $\left\|f-f e_{N}^{(d)}\right\|_{C_{b}^{n-1,1}}$ vanishes as $N \rightarrow \infty$.

4. BSE-extension of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$, BSE-, BED-properties of $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$,

 and the multiplier algebras of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ and $C_{0}^{n-1,1}\left(\mathrm{R}^{d}\right)$In this section, we prefer to use the expressions $C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$ and $\left.C_{B S E\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)\right)$ instead of $C_{B S E}\left(\Phi_{C_{0}^{n}\left(\mathbf{R}^{d}\right)}\right)$ and $C_{B S E}\left(\Phi_{C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)}\right)$, respectively, because in either of the two cases the Gelfand space is identified with \mathbf{R}^{d} by Propositions 3 and 6.
Theorem 3. The BSE-extension of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$; that is,

$$
C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)=C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)
$$

Proof. We show first the inclusion \subseteq. Suppose $\sigma \in C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$. We observe that, for any $k(0 \leq k \leq n)$, any choice of $1 \leq i_{1}, \ldots, i_{n} \leq d$ and $x \in \mathbf{R}^{d}$, the map $C_{0}^{n}\left(\mathbf{R}^{d}\right) \rightarrow \overline{\mathbf{C}}: f \mapsto \frac{1}{k!} T_{e_{i_{1}}, \ldots, e_{i_{k}}} f(x)$ is a bounded linear functional which is contained in the unit ball of $C_{0}^{n}\left(\mathbf{R}^{d}\right)^{*}$. By [9, Theorem 4(i)], there exists a bounded net $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ in $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ of a bound, say β, such that $\lim _{\lambda \in \Lambda} f_{\lambda}(x)=\sigma(x)$ for all $x \in \mathbf{R}^{d}$. By the natural embedding of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ into its second dual, $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ is a net in the β-ball of $C_{0}^{n}\left(\mathbf{R}^{d}\right)^{* *}$. Since the β-ball of $C_{0}^{n}\left(\mathbf{R}^{d}\right)^{* *}$ is weak ${ }^{*}$-compact, there exists a weak*-convergent subnet $\left\{f_{\lambda^{\prime}}\right\}_{\lambda^{\prime} \in \Lambda^{\prime}}$ of $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$. Hence, for any $k(0 \leq k \leq n)$ and any choice $1 \leq i_{1}, \ldots, i_{k} \leq d$, there exists a bounded function $\tau_{i_{1}, \ldots, i_{k}}$ on \mathbf{R}^{d} such that

$$
\lim _{\lambda^{\prime} \in \Lambda^{\prime}} T_{e_{i_{1}}, \ldots, e_{i_{k}}} f_{\lambda^{\prime}}(x)=\tau_{i_{1}, \ldots, i_{k}}(x) \quad\left(x \in \mathbf{R}^{d}\right)
$$

We claim that $\sigma \in C_{b}^{n-1}\left(\mathbf{R}^{d}\right)$, and that

$$
\begin{array}{rr}
T_{e_{i_{1}}, \ldots, e_{i_{k}}} \sigma(x)=\tau_{i_{1}, \ldots, i_{k}}(x) & \left(x \in \mathbf{R}^{d}, 1 \leq i_{1}, \ldots, i_{k} \leq d, k=1, \ldots, n-1\right) \\
\rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} \sigma\right)<\infty, & 1 \leq i_{1}, \ldots, i_{n-1} \leq d
\end{array}
$$

To see this, let $x \in \mathbf{R}^{d}$ and $h \in \mathbf{R} \backslash\{0\}$ be given arbitrarily. Then, by a mean value theorem, we have

$$
\begin{aligned}
\frac{\sigma\left(x+h e_{i_{1}}\right)-\sigma(x)}{h}= & \lim _{\lambda^{\prime}} \frac{f_{\lambda^{\prime}}\left(x+h e_{i_{1}}\right)-f_{\lambda^{\prime}}(x)}{h}=\lim _{\lambda^{\prime}} T_{e_{i_{1}}} f_{\lambda^{\prime}}\left(x+\theta_{\lambda^{\prime}} h e_{i_{1}}\right) \\
= & \lim _{\lambda^{\prime}}\left[T_{e_{i_{1}}} f_{\lambda^{\prime}}(x)+\frac{T_{e_{i_{1}}} f_{\lambda^{\prime}}\left(x+\theta_{\lambda^{\prime}} h e_{i_{1}}\right)-T_{e_{i_{1}}} f_{\lambda^{\prime}}(x)}{\theta_{\lambda^{\prime}} h} \theta_{\lambda^{\prime}} h\right] \\
= & \tau_{i_{1}}(x)+\lim _{\lambda^{\prime}} T_{e_{i_{1}}, e_{i_{1}}} f_{\lambda^{\prime}}\left(x+\tilde{\theta}_{\lambda^{\prime}} \theta_{\lambda^{\prime}} h e_{i_{1}}\right) \theta_{\lambda^{\prime}} h \\
& \left(0<\theta_{\lambda^{\prime}}, \tilde{\theta}_{\lambda^{\prime}}<1\right) .
\end{aligned}
$$

Hence

$$
\left|\frac{\sigma\left(x+e_{i_{1}} h\right)-\sigma(x)}{h}-\tau_{i_{1}}(x)\right| \leq \sup _{\lambda^{\prime}}\left\|T_{e_{i_{1}}, e_{i_{1}}} f_{\lambda^{\prime}}\right\|_{\infty}\left|\theta_{\lambda^{\prime}} h\right| \rightarrow 0(h \rightarrow 0) .
$$

This implies that σ is partially differentiable with respect to $x_{i_{1}}$ and that $T_{e_{i_{1}}} \sigma=\tau_{i_{1}}$. We can repeat this procedure, with respect to $x_{i_{2}}, \ldots, x_{i_{n-1}}$
successively, to obtain

$$
T_{e_{i_{1}}, \ldots, e_{i_{k}}} \sigma=\tau_{i_{1}, \ldots, i_{k}}(1 \leq k \leq n-1)
$$

Further, we must show that $\rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} \sigma\right)<\infty$. (This will also make sure that $T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} \sigma \in C_{b}\left(\mathbf{R}^{d}\right)$.) For any $x, y \in \mathbf{R}^{d}, x \neq y$, we have

$$
\begin{aligned}
& \left|\frac{T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} \sigma(x)-T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} \sigma(y)}{x-y}\right| \\
= & \left|\frac{\tau_{i_{1}, \ldots, i_{n-1}}(x)-\tau_{i_{1}, \ldots, i_{n-1}}(y)}{x-y}\right| \\
= & \lim _{\lambda^{\prime} \in \Lambda^{\prime}}\left|\frac{T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f_{\lambda^{\prime}}(x)-T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f_{\lambda^{\prime}}(y)}{x-y}\right| \\
\leq & \sup _{\lambda^{\prime} \in \Lambda^{\prime}} \rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f_{\lambda^{\prime}}\right) \leq \sup _{\lambda^{\prime} \in \Lambda^{\prime}} n!\left\|f_{\lambda^{\prime}}\right\|_{C_{b}^{n}} \leq n!\beta<\infty .
\end{aligned}
$$

Thus we obtain $\sigma \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$, that is, $C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right) \subseteq C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$.
Next, we show the reverse inclusion \supseteq. Let $\sigma \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$ be given arbitrarily. Choose a nonnegative function $v \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ such that $\operatorname{supp}(v) \subseteq B_{1}(=$ $\left.\left\{x \in \mathbf{R}^{d}:|x| \leq 1\right\}\right)$ and $\int_{B_{1}} v(x) d x=1$. Set $v_{\ell}(x)=\ell^{d} v(\ell x)\left(x \in \mathbf{R}^{d}\right)$, and put $\sigma_{\ell}=\sigma * v_{\ell}, \ell=1,2,3, \ldots$. Obviously, $\left\{\sigma_{\ell}\right\}$ is a sequence of n-times continuously differentiable functions on \mathbf{R}^{d} which converges pointwisely to σ. We will show that $\left\{\sigma_{\ell}\right\}_{\ell}$ is a bounded sequence in $C_{b}^{n}\left(\mathbf{R}^{d}\right)$. Let $a^{1}, \ldots, a^{n-1} \in S\left(\mathbf{R}^{d}\right)$ be given arbitrarily. Then
$(25)\left|\sigma_{\ell}(x)\right| \leq \int_{\mathbf{R}^{d}}|\sigma(x-y)| v_{\ell}(y) d y \leq\|\sigma\|_{\infty} \int_{\mathbf{R}^{d}} v_{\ell}(y) d y=\|\sigma\|_{\infty} \quad\left(x \in \mathbf{R}^{d}\right)$,
and

$$
\begin{equation*}
\left|T_{a^{1}, \ldots, a^{k}} \sigma_{\ell}(x)\right|=\left|\int_{\mathbf{R}^{d}} T_{a^{1}, \ldots, a^{k}} \sigma(x-y) v_{\ell}(y) d y\right| \leq\left\|T_{a^{1}, \ldots, a^{k}} \sigma\right\|_{\infty} \tag{26}
\end{equation*}
$$

for $k=1, \ldots, n-1$. Also we have

$$
\begin{aligned}
& \rho\left(T_{a^{1}, \ldots, a^{n-1}} \sigma_{\ell}\right)(x) \\
&= \sup _{x, y \in \mathbf{R}^{d}, x \neq y} \\
& \left.\quad \frac{1}{|x-y|} \right\rvert\, \int_{\mathbf{R}^{d}} T_{a^{1}, \ldots, a^{n-1}} \sigma(x-z) v_{\ell}(z) d z \\
& \quad-\int_{\mathbf{R}^{d}} T_{a^{1}, \ldots, a^{n-1}} \sigma(y-z) v_{\ell}(z) d z \mid \\
& \leq \int_{\mathbf{R}^{d} x, y \in \mathbf{R}^{d}, x \neq y} \sup \left|\frac{T_{a^{1}, \ldots, a^{n-1}} \sigma(x-z)-T_{a^{1}, \ldots, a^{n-1}} \sigma(y-z)}{x-y}\right| v_{\ell}(z) d z
\end{aligned}
$$

$$
\begin{equation*}
\leq \rho\left(T_{a^{1}, \ldots, a^{n-1}} \sigma\right) \leq n!\|\sigma\|_{C_{b}^{n-1,1}}<\infty \tag{27}
\end{equation*}
$$

By (25), (26), (27), and the properties of functions $\left\{u_{\ell}^{(d)}\right\}_{\ell=1}^{\infty}$ constructed in Theorem 1, it follows that $\left\{u_{\ell}^{(d)} \sigma_{\ell}\right\}_{\ell=1}^{\infty}$ is a bounded sequence of functions
in $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ which converges pointwisely to σ. So $\sigma \in C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$ by [9, Theorem 4(i)].

Theorem 4. (i) $C_{B S E\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)=C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$.
(ii) $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is a BSE-algebra, that is,

$$
C_{B S E\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)=M\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right) .
$$

(iii) $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is a BED-algebra, that is,

$$
C_{B S E\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)}^{0}\left(\mathbf{R}^{d}\right)=C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)
$$

Proof. (i) We prove first the inclusion \subseteq. Suppose $\sigma \in C_{B S E\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$. By $\left[9\right.$, Theorem 4(i)], there exist $\beta<\infty$ and a net $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ in $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ which satisfy $\left\|f_{\lambda}\right\|_{C_{b}^{n-1,1}} \leq \beta(\lambda \in \Lambda)$, and $\lim _{\lambda} f_{\lambda}(x)=\sigma(x)\left(x \in \mathbf{R}^{d}\right)$. By Theorem 3, there exists a constant γ such that

$$
\begin{equation*}
\|f\|_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)} \leq \gamma\|f\|_{C_{b}^{n-1,1}} \quad\left(f \in C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)\right) . \tag{28}
\end{equation*}
$$

Here, we denote by Ω the directed set of all finite subsets of \mathbf{R}^{d} with inclusion order, and $\Lambda \times \Omega$ is the directed set with the order: $\left(\lambda_{1}, \omega_{1}\right) \leq\left(\lambda_{2}, \omega_{2}\right)$ if and only if $\lambda_{1} \leq \lambda_{2}$ and $\omega_{1} \leq \omega_{2}$.

We claim here that, for each $(\lambda, \omega) \in \Lambda \times \Omega$, we can choose $f_{\lambda, \omega} \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ which satisfies (a) $f_{\lambda}(x)=f_{\lambda, \omega}(x)(x \in \omega)$, and (b) $\left\|f_{\lambda, \omega}\right\|_{C_{b}^{n}} \leq \gamma \beta+1$. To show this, we observe that each element f_{λ} is a BSE-function of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$, and by (28), that $\left\|f_{\lambda}\right\|_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)} \leq \gamma\left\|f_{\lambda}\right\|_{C_{b}^{n-1,1}} \leq \gamma \beta$. Hence by Helly's theorem we can choose $f_{\lambda, \omega} \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ which satisfies (a) and (b).

We assert that $\left\{f_{\lambda, \omega}\right\}_{(\lambda, \omega) \in \Lambda \times \Omega}$ is a bounded net in $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ which converges pointwisely to σ. Indeed, take $x \in \mathbf{R}^{d}$ arbitrarily and put $\omega_{0}=\{x\} \in \Omega$. Let $\varepsilon>0$ be given arbitrarily. Then we can choose $\lambda_{0} \in \Lambda$ such that $\left|f_{\lambda}(x)-\sigma(x)\right| \leq$ $\varepsilon\left(\lambda_{0} \leq \lambda\right)$. Then we have

$$
\left|f_{\lambda, \omega}(x)-\sigma(x)\right|=\left|f_{\lambda}(x)-\sigma(x)\right| \leq \varepsilon \quad\left((\lambda, \omega) \geq\left(\lambda_{0}, \omega_{0}\right)\right) .
$$

This implies that $\sigma \in C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$. Hence $C_{B S E\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$ is contained in $C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$. The reverse inclusion " $?$ " is easily proved by Corollary 1 and [9 , Theorem 4], so we obtain (i).
(ii) By Proposition 5, we have

$$
\begin{equation*}
C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right) \subseteq M\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right) \tag{29}
\end{equation*}
$$

On the other hand, since $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ has a bounded approximate identity by Theorem 2, it follows from [9, Corollary 5] that

$$
\begin{equation*}
M\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right) \subseteq C_{B S E\left(C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right) \tag{30}
\end{equation*}
$$

From (29), (30), (i), and Theorem 3, we get the desired result.
(iii) Since $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is regular and has a bounded approximate identity composed of elements with compact supports from Proposition 6 and Theorem 2, (iii) follows from [4, Theorem 4.7].
Remark 1. By Theorems 1 and 2, $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ and $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ are in the class of commutative Banach algebras B with the properties $\left(\alpha_{B}\right)$ and $\left(\beta_{B}\right)$ in [5, p. 539] (see also [5, p. 543, Examples 3.3]). Hence we can define and investigate Segal algebras in $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ and $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$.

Theorem 5. (i) $M\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)=C_{b}^{n}\left(\mathbf{R}^{d}\right)$.
(ii) The algebra $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is neither of BSE nor of BED.

Proof. (i) The inclusion \supseteq follows from Proposition 2. To prove the reverse inclusion, let $f \in M\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)$ be given. For each $x \in \mathbf{R}^{d}$ and a compact neighborhood U_{x} of x, there exists $u_{x} \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ such that $u_{x}=1$ on U_{x}. Then $f u_{x} \in C_{0}^{n}\left(\mathbf{R}^{d}\right)$ and $f=f u_{x}$ on U_{x}. Therefore f is n-times continuously differentiable. Since $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ has a bounded approximate identity by Theorem 1, $M\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)$ is contained in $C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)$ by [9, Corollary 5]. Also $C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)=C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$ by Theorem 3, and hence $f \in C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$. Then, for any $1 \leq i_{1}, \ldots, i_{n} \leq d$, we have

$$
\begin{aligned}
\left\|T_{e_{i_{1}}, \ldots, e_{i_{n}}} f\right\|_{\infty} & =\sup _{x \in \mathbf{R}^{d}} \lim _{h \in \mathbf{R}, h \rightarrow 0} \frac{\left|T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\left(h e_{i_{n}}+x\right)-T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f(x)\right|}{|h|} \\
& \leq \sup _{x \in \mathbf{R}^{d}} \rho\left[T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right](x)=\rho\left(T_{e_{i_{1}}, \ldots, e_{i_{n-1}}} f\right)<\infty,
\end{aligned}
$$

and hence $f \in C_{b}^{n}\left(\mathbf{R}^{d}\right)$.
(ii) $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is not of BSE since $C_{B S E\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)}\left(\mathbf{R}^{d}\right)=C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right) \neq C_{b}^{n}\left(\mathbf{R}^{d}\right)$ $=M\left(C_{0}^{n}\left(\mathbf{R}^{d}\right)\right)$ by Theorem 3 and (i). Then, since $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is regular and has a bounded approximate identity composed of elements with compact supports, we can apply [4, Theorem 4.7] to conclude that $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ is not of BED.

5. $C_{0}^{n-1,1}\left(\mathrm{R}^{d}\right)$ as Birtel's commutative extension of $C_{0}^{n}\left(\mathbf{R}^{d}\right)$

Birtel [1] introduced the notion of commutative extension of commutative semisimple Banach algebras:
Definition 5 ([1]). Suppose that A is a commutative semisimple Banach algebra. Denote by A^{\prime} the norm closed subspace of A^{*} generated by Φ_{A}, and $A^{\prime *}$ the Banach space dual of A^{\prime}. Arens type products $A \times A^{\prime} \rightarrow A^{\prime}:(f, p) \mapsto$ $f \cdot p ; A^{\prime} \times A^{* *} \rightarrow A^{\prime}:(p, F) \mapsto p \cdot F ; A^{\prime *} \times A^{* *} \rightarrow A^{\prime *}:(F, G) \mapsto F \cdot G ;$ are defined by
(i) $\langle f \cdot p, g\rangle=\langle f g, p\rangle=\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \varphi(f) \varphi(g)$

$$
\left(f, g \in A, p=\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \varphi \in \operatorname{span}\left(\Phi_{A}\right)\right)
$$

(ii) $\langle f, p \cdot F\rangle=\langle f \cdot p, F\rangle=\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) F(\varphi) \varphi(f)$

$$
\left.\left(f \in A, p=\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \varphi \in \operatorname{span}\left(\Phi_{A}\right)\right), F \in A^{\prime *}\right)
$$

(iii) $\langle p, F \cdot G\rangle=\langle p \cdot F, G\rangle=\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) F(\varphi) G(\varphi)$

$$
\left(p=\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \varphi \in \operatorname{span}\left(\Phi_{A}\right), F, G \in A^{\prime *}\right)
$$

Since $\operatorname{span}\left(\Phi_{A}\right)$ is dense in A^{\prime}, above (i), (ii), and (iii) are enough to define products.

Birtel showed that $A^{* *}$ is a commutative Banach algebra with respect to the Arens type product and that the natural embedding of A into $A^{\prime *}$ is a continuous isomorphism, and called $A^{\prime *}$ the commutative extension of A.

Definition 6. Let $D_{B S E}\left(\Phi_{A}\right)$ be the space of bounded complex-valued functions σ on Φ_{A} which satisfy BSE-condition with respect to A with norm

$$
\begin{equation*}
\|\sigma\|_{B S E}:=\sup _{p \in \operatorname{span}\left(\Phi_{A}\right),\|p\|_{A^{*}} \leq 1}\left|\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \sigma(\varphi)\right|<\infty . \tag{31}
\end{equation*}
$$

Using Helly's theorem, we can prove easily that a bounded function σ on Φ_{A} belongs to $D_{B S E}\left(\Phi_{A}\right)$ if and only if there exists a bounded net in A converging pointwisely to σ, (cf. the proof of Theorem 4(i) of [9]).

If we consider $F \in A^{\prime *}$ as a function on A^{\prime} defined by $F(\zeta)=\langle F, \zeta\rangle\left(\zeta \in A^{\prime}\right)$, $\pi(F):=F \mid \Phi_{A}$ is a bounded function on Φ_{A} with a bound $\|F\|_{A^{\prime *}}$.

Lemma 7. For each $F \in A^{\prime *}$, we have $\pi(F) \in D_{B S E}\left(\Phi_{A}\right)$, and $\pi: A^{*} \rightarrow$ $D_{B S E}\left(\Phi_{A}\right): F \mapsto F \mid \Phi_{A}$ is a surjective isometric isomorphism. Hence we can identify $A^{* *}$ with $D_{B S E}\left(\Phi_{A}\right)$ through this representation, that is, $A^{*}=$ $D_{B S E}\left(\Phi_{A}\right)$.
Proof. Let $F \in A^{* *}$ be given arbitrarily. Then we have

$$
\begin{aligned}
\|\pi(F)\|_{B S E} & =\sup _{p \in \operatorname{span}\left(\Phi_{A}\right),\|p\|_{A^{*}} \leq 1}\left|\sum_{\varphi \in \Phi_{A}} \hat{p}(\varphi) \sigma(\varphi)\right| \\
& =\sup _{p \in \operatorname{span}\left(\Phi_{A}\right),\|p\|_{A^{*}} \leq 1}|\langle p, F\rangle|=\|F\|_{A^{\prime *}}
\end{aligned}
$$

Therefore π is an isometric map from $A^{\prime *}$ to $D_{B S E}\left(\Phi_{A}\right)$. Also if $\sigma \in D_{B S E}\left(\Phi_{A}\right)$, we see from (31) that σ corresponds to an element of $A^{\prime *}$, which implies that π is surjective.

By (iii) of Definition 5, Arens type product in $D_{B S E(A)}\left(\Phi_{A}\right)$ is equal to pointwise multiplication on Φ_{A}. This proves that π is a homomorphism.

We can see by Lemma 7 that $D_{B S E}\left(\Phi_{A}\right)$ is a representation of $A^{* *}$ as a Banach function algebra on Φ_{A}. Note that $C_{B S E}\left(\Phi_{A}\right)$ is the set of complexvalued continuous functions σ with $\|\sigma\|_{B S E}<\infty$. In general, $D_{B S E}\left(\Phi_{A}\right)$ is not
equal to $C_{B S E}\left(\Phi_{A}\right)$. For example, in the case where $A=L^{1}(\mathbf{R})$ with $\Phi_{A}=$ $\mathbf{R}, C_{B S E}\left(\Phi_{A}\right)$ is the set of all the Fourier-Stieltjes transforms of elements in $M(\mathbf{R})$. On the other hand, $D_{B S E}\left(\Phi_{A}\right)$ is the set of Fourier-Stieltjes transforms of elements in $M(\overline{\mathbf{R}})$, where $\overline{\mathbf{R}}$ is the Bohr compactification of \mathbf{R}, and they are not equal. But in our case where $A=C_{0}^{n}\left(\mathbf{R}^{d}\right)$, we have the following result.

Theorem 6. $D_{B S E}\left(\Phi_{C_{0}^{n}\left(\mathbf{R}^{d}\right)}\right)=C_{B S E}\left(\Phi_{C_{0}^{n}\left(\mathbf{R}^{d}\right)}\right)$.
Proof. Suppose $\sigma \in D_{B S E}\left(\Phi_{C_{0}^{n}\left(\mathbf{R}^{d}\right)}\right)$. Since σ is a bounded function on \mathbf{R}^{d} which satisfies the BSE-condition with respect to $C_{0}^{n}\left(\mathbf{R}^{d}\right)$, by Helly's theorem, there is a bounded net $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ in $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ (with a bound β) converging pointwisely to σ on \mathbf{R}^{d}. Let $x, y \in \mathbf{R}^{d}, x \neq y$. We put $a=\frac{x-y}{|x-y|}, h=|x-y|$. Then we have

$$
\begin{aligned}
\frac{|\sigma(x)-\sigma(y)|}{|x-y|} & =\lim _{\lambda \in \Lambda} \frac{\left|f_{\lambda}(x)-f_{\lambda}(y)\right|}{|x-y|} \\
& =\lim _{\lambda \in \Lambda}\left|T_{a} f_{\lambda}\left(y+\theta_{x, y} h a\right)\right|, \quad\left(\text { with } 0<\theta_{x, y}<1\right) \\
& \leq \sup _{\lambda \in \Lambda}\left\|T_{a} f_{\lambda}\right\|_{\infty} \leq \beta .
\end{aligned}
$$

This implies that $\sigma \in C_{b}\left(\mathbf{R}^{d}\right)$ and hence $\sigma \in C_{B S E}\left(\Phi_{C_{0}^{n}\left(\mathbf{R}^{d}\right)}\right)$. The reverse inclusion is obvious.

Corollary 2. $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)=C_{0}^{n}\left(\mathbf{R}^{d}\right)^{\prime *}$, that is, $C_{b}^{n-1,1}\left(\mathbf{R}^{d}\right)$ has a predual.
Proof. The proof follows by an obvious combination of Lemma 7, Theorems 3 and 6.

Remark 2. A Banach algebra of n-times continuously differentiable functions on $[0,1]$ are treated in $[8$, p. 300] (see also, $[2,3,6,7]$). But as far as the authors know, there are no articles in which $C_{0}^{n}\left(\mathbf{R}^{d}\right)$ or $C_{0}^{n-1,1}\left(\mathbf{R}^{d}\right)$ is investigated as a Banach algebra.

Acknowledgements. This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University. Authors are grateful to the referee for the precise evaluation to the paper, and for giving helpful suggestions to improve the paper.

References

[1] F. T. Birtel, On a commutative extension of a Banach algebra, Proc. Amer. Math. Soc. 13 (1962), 815-822. https://doi.org/10.2307/2034184
[2] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24, The Clarendon Press, Oxford University Press, New York, 2000.
[3] J. T. Daly and P. B. Downum, A Banach algebra of functions with bounded nth differences, Trans. Amer. Math. Soc. 223 (1976), 279-294. https://doi.org/10.2307/1997529
[4] J. Inoue and S.-E. Takahasi, On characterizations of the image of the Gelfand transform of commutative Banach algebras, Math. Nachr. 280 (2007), no. 1-2, 105-126. https: //doi.org/10.1002/mana. 200410468
\qquad , Segal algebras in commutative Banach algebras, Rocky Mountain J. Math. 44 (2014), no. 2, 539-589. https://doi.org/10.1216/RMJ-2014-44-2-539
[6] E. Kaniuth, A Course in Commutative Banach Algebras, Graduate Texts in Mathematics, 246, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-72476-8
[7] R. Larsen, Banach Algebras, Marcel Dekker, Inc., New York, 1973.
[8] C. E. Rickart, General Theory of Banach Algebras, The University Series in Higher Mathematics, D. van Nostrand Co., Inc., Princeton, NJ, 1960.
[9] S.-E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein type-theorem, Proc. Amer. Math. Soc. 110 (1990), no. 1, 149-158. https://doi.org/10.2307/2048254

Jyunji Inoue
Hokkaido University
Hanakawa Kita 3-2-62
Ishikari, Hokkaido, 061-3213, Japan
Email address: rqstw4a1@xk9.so-net.ne.jp
Sin-Ei Takahasi
Yamagata University
Laboratory of Mathematics and Games
Funabashi 273-0032, Japan
Email address: sin_ei1@yahoo.co.jp

[^0]: Received October 2, 2018; Accepted February 7, 2019.
 2010 Mathematics Subject Classification. Primary 46J15; Secondary 46J40, 46J20.
 Key words and phrases. natural commutative Banach function algebra, Lipschitz algebra, BSE-extension, BSE-algebra, BED-algebra, bounded approximate identity, multiplier algebra.

