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BANACH FUNCTION ALGEBRAS OF n-TIMES

CONTINUOUSLY DIFFERENTIABLE FUNCTIONS ON Rd

VANISHING AT INFINITY AND THEIR BSE-EXTENSIONS

Jyunji Inoue and Sin-Ei Takahasi

Dedicated to Professor Kozo Yabuta on his 77th birth day

Abstract. In authors’ paper in 2007, it was shown that the BSE-exten-

sion of C1
0 (R), the algebra of continuously differentiable functions f on

the real number space R such that f and df/dx vanish at infinity, is the
Lipschitz algebra Lip1(R). This paper extends this result to the case

of Cn
0 (Rd) and Cn−1,1

b (Rd), where n and d represent arbitrary natural

numbers. Here Cn
0 (Rd) is the space of all n-times continuously differ-

entiable functions f on Rd whose k-times derivatives are vanishing at

infinity for k = 0, . . . , n, and Cn−1,1
b (Rd) is the space of all (n− 1)-times

continuously differentiable functions on Rd whose k-times derivatives are

bounded for k = 0, . . . , n− 1, and (n− 1)-times derivatives are Lipschitz.
As a byproduct of our investigation we obtain an important result that

Cn−1,1
b (Rd) has a predual.

1. Introduction and preliminaries

In this paper N represents the set of natural numbers, and C the complex
number field. We denote by (A, ‖ ‖A) a commutative semisimple Banach al-
gebra with Gelfand space ΦA. Cb(ΦA) and C0(ΦA) denote the space of all
complex-valued continuous functions on ΦA which are bounded and vanishing
at infinity, respectively. The Gelfand transform of an element a ∈ A is denoted
by â, and Â represents the set of all Gelfand transforms of a ∈ A. A∗ denotes
the dual space of A, and span(ΦA) is the linear subspace of A∗ generated by
ΦA. So, every element p ∈ span(ΦA) can be represented uniquely in the form
p =

∑
ϕ∈ΦA

p̂(ϕ)ϕ, where p̂ is a complex-valued function on ΦA with a finite

support; supp(p̂) = {ϕ ∈ ΦA : p̂(ϕ) 6= 0}. A continuous function σ on ΦA is
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said to be a BSE-function if there exists a nonnegative constant β such that

(1)

∣∣∣∣ ∑
ϕ∈ΦA

p̂(ϕ)σ(ϕ)

∣∣∣∣ ≤ β‖p‖A∗ (p ∈ span(ΦA)).

The infimum of β in (1) is denoted by ‖σ‖BSE(A). The set of all BSE-functions
on ΦA is denoted by CBSE(ΦA). Obviously, CBSE(ΦA) forms a linear sub-
space of Cb(ΦA). It turns out that ‖ ‖BSE(A) is a complete algebra norm on
CBSE(ΦA) ([9]). The Banach algebra (CBSE(ΦA), ‖ ‖BSE(A)) has an impor-

tant subalgebra C0
BSE(ΦA). Suppose σ ∈ CBSE(ΦA). We denote by K(ΦA) the

directed set of all compact subsets of ΦA with inclusion order. For K ∈ K(ΦA),
we put

‖σ‖BSE(A),K := sup
p∈span(ΦA\K),‖p‖A∗≤1

∣∣∣∣ ∑
ϕ∈ΦA

p̂(ϕ)σ(ϕ)

∣∣∣∣.
C0
BSE(ΦA) is the set of all σ ∈ CBSE(ΦA) satisfying lim

K∈K(ΦA)
‖σ‖BSE(A),K = 0.

It follows that C0
BSE(ΦA) forms a closed ideal of CBSE(ΦA) ([4, Corollary 3.9]).

A bounded linear operator T of A is called a multiplier of A if T (fg) =
(Tf)g (f, g ∈ A) holds. The set of all multipliers of A is denoted by M(A).
M(A) forms a commutative Banach algebra with respect to usual sum, scalar
multiplication, the operator composition as multiplication, and the operator
norm as norm. This algebra is called the multiplier algebra of A. It is well
known that, for every T ∈ M(A), there exists a unique bounded continuous

function on ΦA, denoted by T̂ , which satisfies T̂ a = T̂ â (a ∈ A). We denote

M̂(A) = {T̂ : T ∈M(A)}. M̂(A) forms a Banach function algebra on ΦA, with

‖T̂‖ = ‖T‖ as norm.

Definition 1 (cf. [4,9]). Let A be a commutative semisimple Banach algebra.

(i) A is said to be a BSE-algebra if CBSE(ΦA) = M̂(A) holds.

(ii) A is said to be a BED-algebra if C0
BSE(ΦA) = Â holds.

Lemma 1. Suppose A is a Banach function algebra on a locally compact non-
compact Hausdorff space X which satisfies the following (i), (ii), and (iii).

(i) A ⊆ C0(X);
(ii) A is closed under taking the complex conjugation;
(iii) If f ∈ A and λ > 0 satisfy λ−f(x) > 0 (x ∈ X), we have 1

λ−f −
1
λ ∈ A.

Then A is natural, that is, every ϕ ∈ ΦA is represented, by some xϕ ∈ X, as

ϕ(f) = f(xϕ) (f ∈ A).

Proof. Let X̃ = X ∪ {∞} be the one point compactification of X, and Ae =

A⊕Ce, the unitization of A. Every f+µe ∈ Ae is considered as a function on X̃
by (f+µe)(x) = f(x)+µ if x ∈ X, and = µ if x =∞, with ‖f+µe‖ = ‖f‖+|µ|
as norm. Then Ae is a Banach function algebra on X̃ which is also closed under
taking the complex conjugation. We first show that Ae is natural. To do this,
suppose contrary that Ae is not natural. Then there exists ϕ0 ∈ ΦAe

which can
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not be given by any point x ∈ X̃, and Ker ϕ0 is a maximal ideal of Ae which
dose not contain any maximal ideal of Ae given by an element of X̃. Therefore,
for each x ∈ X̃, there exists fx ∈ Ae such that ϕ0(fx) = 0 and |fx(x)| = 1.

Choose an open neighborhood Ux ⊆ X̃ of x such that |fx| > 0 on Ux. Since

X̃ is compact, there exist a finite number of elements x1, . . . , xm ∈ X̃ such
that ∪mk=1Uxk

= X̃. Put g :=
∑m
k=1 fxk

fxk
∈ Ae, where fxk

is the complex

conjugate of fxk
. Then 0 < g(x) (x ∈ X̃). Set λ := g(∞), and f := λe − g.

Then f ∈ A with 0 < λ − f(x)(= g(x)) for all x ∈ X. By (iii), it follows that
h := 1

λ−f −
1
λ ∈ A. Then we have 1 = (λ − f(x))(h(x) + 1/λ) for all x ∈ X.

From this we have

(2) e = (λe− f)(h+
1

λ
e).

Applying ϕ0 to (2), we obtain

1 = ϕ0(λe− f)ϕ0(h+
1

λ
e)

= ϕ0(g)ϕ0(h+
1

λ
e)

=

( m∑
k=1

ϕ0(fxk
)ϕ0(fxk

)

)
ϕ0(h+

1

λ
e) = 0.(3)

Thus we arrive at a contradiction (3), hence Ae is natural.
Next, suppose ϕ ∈ ΦA. If we put ϕ̃(f +λe) = ϕ(f) +λ (f +λe ∈ Ae), then

ϕ̃ ∈ ΦAe . Since Ae is natural from the above argument, there exists xϕ ∈ X̃
such that

(4) ϕ̃(f + λe) = (f + λe)(xϕ) (f + λe ∈ Ae).

In this case xϕ 6= ∞. For, if xϕ = ∞, we have from (4) that ϕ(f) = 0
(f ∈ A), which is impossible since ϕ is a nonzero complex homomorphism of
A. Therefore xϕ ∈ X follows, and from (4) we have ϕ(f) = f(xϕ) (f ∈ A),
which implies that A is natural. �

2. Algebras of differentiable functions, Cn
b (Rd) and Cn

0 (Rd)

Let n, d be given natural numbers. The symbol S(Rd) represents the unit
sphere in Rd, and e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1)

∈ S(Rd). We use the notation |x| = (
∑d
i=1 |xi|2)1/2, x = (x1, . . . , xd) ∈ Rd.

For a = (a1, . . . , ad) ∈ S(Rd), Ta denotes the differential operator Ta =∑d
k=1 ak

∂
∂xk

=
∑d
k=1 akTek . We denote by Cnb (Rd) (resp. Cn0 (Rd)) the space

of all complex-valued functions on Rd which are n-times continuously differen-
tiable, and satisfy that all

Tei1 ,...,eik f(= Teik (· · · (Tei2 (Tei1 f)) · · · ))

for 1 ≤ i1, . . . , ik ≤ d, k = 0, 1, . . . , n, are bounded (resp. vanishing at infinity).
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Suppose f ∈ Cnb (Rd) (resp. Cn0 (Rd)). For ak = (ak1 , . . . , a
k
d) ∈ S(Rd),

k = 1, . . . , n, by applying Ta1 , Ta2 , . . . , Tak to f successively, we obtain

(5)

Ta1,...,akf =
∑

1≤i1,...,ik≤d

a1
i1 · · · a

k
ik
Tei1 ,...,eik f

∈ Cn−kb (Rd) (resp. Cn−k0 (Rd)),

where
∑

1≤i1,...,ik≤d represents the sum over all choices of i1, . . . , ik in {1, . . . , d}.
In the following, ‖f‖∞ denotes the sup-norm of f on Rd.

Definition 2. We define ‖ ‖Cn
b

on Cnb (Rd) by

‖f‖Cn
b

= ‖f‖∞ +

n∑
k=1

1

k!
sup

a1,...,ak∈S(Rd)

‖Ta1,...,akf‖∞

=

n∑
k=0

1

k!
sup

a1,...,ak∈S(Rd)

‖Ta1,...,akf‖∞ (f ∈ Cnb (Rd)).

Proposition 1.

‖f‖Cn
b
≤ ‖f‖n,∞ ≤ dn‖f‖Cn

b
(f ∈ Cnb (Rd)),

where ‖f‖n,∞ = ‖f‖∞ +
∑n
k=1

1
k!

∑
1≤i1,...,ik≤d ‖Tei1 ,...,eik f‖∞.

Proof. The first inequality is a consequence of easy calculation using (5):

‖f‖Cn
b

=

n∑
k=0

1

k!
sup

a1,...,ak∈S(Rd)

‖Ta1,...,akf‖∞

=

n∑
k=0

1

k!
sup

a1,...,ak∈S(Rd)

∥∥∥∥ ∑
1≤i1,...,ik≤d

a1
i1 · · · a

k
ik
Tei1 ,...,eik f

∥∥∥∥
∞

≤
n∑
k=0

1

k!

∑
1≤i1,...,ik≤d

‖Tei1 ,...,eik f‖∞ = ‖f‖n,∞,

where aj = (aj1, . . . , a
j
d) ∈ S(Rd), j = 1, . . . , k, k = 1, . . . , n.

For the second inequality, fix k(1 ≤ k ≤ n). Then, for each 1 ≤ i1, . . . , ik ≤
d, we have ‖Tei1 ,...,eik f‖∞ ≤ sup

a1,...,ak∈S(Rd)

‖Ta1,...,akf‖∞, and from this we have

‖f‖n,∞ = ‖f‖∞ +

n∑
k=1

∑
1≤i1,...,ik≤d

1

k!
‖Tei1 ,...,eik f‖∞

≤ ‖f‖∞ +

n∑
k=1

dk
1

k!
sup

a1,...,ak∈S(Rd)

‖Ta1,...,akf‖∞

≤ dn‖f‖Cn
b
. �
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By Proposition 1, two norms on Cnb (Rd), ‖ ‖n,∞ and ‖ ‖Cn
b

are equivalent,
and since it is obvious that ‖ ‖n,∞ is complete, it follows that ‖ ‖Cn

b
is also

complete.

Lemma 2. Suppose f, g ∈ Ckb (Rd), a1, . . . , ak ∈ S(Rd), and 0 ≤ N . Then

sup
N≤|x|

∣∣∣∣Ta1,...,ak(fg)(x)

∣∣∣∣ ≤ k∑
j=0

(
k

j

)
sup

b1,...,bj∈S(Rd)

sup
N≤|x|

∣∣∣∣Tb1,...,bjf(x)

∣∣∣∣
· sup
c1,...,ck−j∈S(Rd)

sup
N≤|x|

∣∣∣∣Tc1,...,ck−jg(x)

∣∣∣∣,(6)

where
(
k
j

)
represents the binomial coefficient.

Proof. We observe that

Ta1,...,ak(fg)(x) = f(x)Ta1,...,akg(x) +

k−1∑
j=1

∑
(#)

Tas1 ,...,asj f(x)Tat1 ,...,atk−j g(x)

+ (Ta1,...,akf(x))g(x) for all x ∈ Rd,(7)

where

(#) =

{
1 ≤ s1 ≤ · · · ≤ sj ≤ k, 1 ≤ t1 ≤ · · · ≤ tk−j ≤ k,

{s1, . . . , sj , t1, . . . , tk−j} = {1, 2 . . . , k}
}
.

With easy calculation, we obtain (6) from (7). �

Proposition 2. (Cnb (Rd), ‖ ‖Cn
b

) is a Banach algebra, and Cn0 (Rd) is its closed
ideal.

Proof. Let f, g ∈ Cnb (Rd) be given arbitrarily. By Lemma 2 with N = 0, we
have

‖fg‖Cn
b

=

n∑
k=0

1

k!
sup

a1,...,ak∈S(Rd)

‖Ta1,...,ak(fg)‖∞

≤
n∑
k=0

1

k!

k∑
j=0

(
k

j

)
sup

b1,...,bj∈S(Rd)

‖Tb1,...,bjf‖∞ sup
c1,...,ck−j∈S(Rd)

‖Tc1,...,ck−jg‖∞

≤
n∑
k=0

k∑
j=0

1

j!
sup

b1,...,bj

∈S((Rd)

‖Tb1,...,bjf‖∞
1

(k − j)!
sup

c1,...,ck−j

∈S(Rd)

‖Tc1,...,ck−jg‖∞

≤
( n∑
k=0

1

k!
sup

b1,...,bk∈S(Rd)

‖Tb1,...,bkf‖∞
)( n∑

k=0

1

k!
sup

c1,...,ck∈S(Rd)

‖Tc1,...,ckg‖∞
)
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= ‖f‖Cn
b
‖g‖Cn

b
.

Thus, the norm ‖ ‖Cn
b

is submultiplicative, and hence (Cnb (Rd), ‖ ‖Cn
b

) is a
Banach algebra.

Let {fN}N be a Cauchy sequence in Cn0 (Rd). Then there exists f ∈ Cnb (Rd)
such that limN→∞ ‖f − fN‖Cn

b
= 0. Let k(0 ≤ k ≤ n), 1 ≤ i1, . . . , ik ≤ d and

ε > 0 be given arbitrarily. Then there exists N0 ∈ N such that ‖f − fN0
‖Cn

b
≤

ε/(2n!). Choose M > 0 such that supM≤|x| |Tei1 ,...,eik fN0
(x)| ≤ ε/2. Then we

have

sup
M≤|x|

|Tei1 ,...,eik f(x)| ≤ sup
M≤|x|

|Tei1 ,...,eik fN0(x)|+ n!‖f − fN0‖Cn
b

≤ ε/2 + n!(ε/(2n!)) = ε.

Hence Tei1 ,...,eik f vanishes at infinity for all 0 ≤ k ≤ n and 1 ≤ i1, . . . , ik ≤ d,

that is, f ∈ Cn0 (Rd). This implies that Cn0 (Rd) is closed.
Suppose f ∈ Cn0 (Rd) and g ∈ Cnb (Rd). For any 1 ≤ i1, . . . , in ≤ d, 1 ≤ k ≤

n, Tei1 ,...,eik (fg) is a sum of the functions of forms

fTei1 ,...,eik g, Tej1 ,...,ejr fTejr+1
,...,ejk

g, (Tei1 ,...,eik f)g (1 ≤ r ≤ k − 1),

which belong to C0(Rd), where {j1, . . . , jr} and {jr+1, . . . jk} are some subse-
quences of {i1, . . . , ik}.

Hence fg, Tei1 ,...,eik (fg) ∈ C0(Rd) for k = 1, . . . , n. Therefore fg ∈ Cn0 (Rd).
�

Proposition 3. (Cn0 (Rd), ‖ ‖Cn
b

) is a natural Banach function algebra on Rd,

and by the identification of ϕ ∈ ΦCn
0 (Rd) with the corresponding xϕ ∈ Rd, Rd

is its Gelfand space and the identity map is the Gelfand transform.
From this, it follows easily that Cn0 (Rd) is regular.

Proof. Suppose λ > 0, and f a real function in Cn0 (Rd) such that λ− f(x) > 0
for all x ∈ Rd. Since f ∈ C0(Rd), there is δ > 0 such that λ− f(x) ≥ δ for all

x ∈ Rd. Put F = 1
λ−f −

1
λ = f

λ(λ−f) .

That F ∈ C0(Rd) is clear. Let 1 ≤ i1, . . . , in ≤ d be arbitrarily chosen. We

claim here that Tei1 ,...,eikF = Gk

(λ−f)k+1 , where Gk ∈ Cn−k0 (Rd) for k = 1, . . . , n.

Since Tei1F = (Tei1 f) 1
(λ−f)2 , the claim is true for k = 1. If the claim is true for

k(< n), then it is easy to see by elementary calculation that the claim is true
for k + 1. By induction, the claim is true for k = 1, . . . , n, which prove that
F ∈ Cn0 (Rd). Since Cn0 (Rd) is closed under taking the complex conjugation,
we can apply Lemma 1, to conclude that Cn0 (Rd) is a natural Banach function
algebra on Rd. �

Theorem 1. The algebra Cn0 (Rd) has a bounded approximate identity com-
posed of elements with compact supports.
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Proof. Let u ∈ Cn0 (R) be such that supp(u) ⊂ [−1, 1], and
∫ 1

−1
u(x)dx = 1.

For each N ∈ N, define a function uN on R by

uN (x) =

(∫ x

−∞
u(t+N + 1)dt

)
·
(∫ ∞

x

u(t−N − 1)dt

)
(−∞ < x <∞).

Then uN ∈ Cn0 (R) with supp(uN ) ⊂ [−N − 2, N + 2] and uN (x) = 1 (−N ≤
x ≤ N). Therefore if we define

u
(d)
N (x) = uN (|x|) (N ∈ N, x ∈ Rd),

we have u
(d)
N ∈ Cn0 (Rd) with supp(u

(d)
N ) ⊆ {x ∈ Rd : |x| ≤ N +2} which satisfy

u
(d)
N (x) = 1 (|x| ≤ N), and ‖u(d)

N ‖Cn
b

= · · · = ‖u(d)
1 ‖Cn

b
.

Let f ∈ Cn0 (Rd) and ε > 0 be given. There exists N0 ∈ N such that if
N0 ≤ N then, for each j = 0, . . . , n, we have

1

j!
sup

b1,...,bj

∈S(Rd)

sup
N≤|x|

|Tb1,...,bjf(x)|

≤ 1

j!
sup

b1,...,bj

S(Rd)

∑
1≤i1,...,ij≤d

〈b1i1 · · · b
j
ij
〉 sup
N≤|x|

|Tei1 ,...,eij f(x)|

≤ 2ε

(n+ 1)(n+ 2)‖1− u(d)
N0
‖Cn

b

,(8)

where b` = (b`1, . . . , b
`
d), ` = 1, . . . , j. By (8), Lemma 2(6), and the facts that

(f(1− u(d)
N ))(x) = 0 if |x| ≤ N, ‖1− u(d)

N ‖Cn
b

= · · · = ‖1− u(d)
1 ‖Cn

b
, we have

‖f − fu(d)
N ‖Cn

b

=

n∑
k=0

1

k!
sup

a1,...,ak∈S(Rd)

sup
N≤|x|

|Ta1,...,ak(f(1− u(d)
N ))(x)|

≤
n∑
k=0

1

k!

k∑
j=0

(
k

j

)
sup

b1,...,bj

∈S(Rd)

sup
N≤|x|

|Tb1,...,bjf(x)| sup
c1,...,ck−j

S(Rd)

‖Tc1,...,ck−j (1− u(d)
N )‖∞

≤
n∑
k=0

k∑
j=0

1

j!
sup

b1,...,bj

∈S(Rd)

sup
N≤|x|

|Tb1,...,bjf(x)|
sup c1,...,ck−j

S(Rd)

‖Tc1,...,ck−j (1− u(d)
N )‖∞

(k − j)!

≤
n∑
k=0

(k + 1)
2ε

(n+ 1)(n+ 2)‖1− u(d)
N0
‖Cn

b

‖1− u(d)
N ‖Cn

b
= ε (N0 ≤ N).

Thus {u(d)
N }N∈N is a bounded approximate identity of Cn0 (Rd) such that

supp(u
(d)
N ) ⊂ {x ∈ Rd : |x| ≤ N + 2} for N = 1, 2, . . .. �
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3. Algebras Cn−1,1
b (Rd) and Cn−1,1

0 (Rd)

We denote by Lip1(R) (resp. Lip0
1(R)) the Lipschitz algebra on R; that

is, the space of complex-valued continuous functions on R which are bounded
(resp. vanishing at infinity) and satisfy

ρ(f) = sup
x,y∈R,
x 6=y

|f(x)− f(y)|
|x− y|

<∞

(
resp. lim

M→∞
ρM (f)

(
= sup

x,y∈R,x 6=y
M≤|x|,|y|

|f(x)− f(y)|
|x− y|

)
= 0

)
.

With ‖f‖Lip1 = ‖f‖∞ + ρ(f) as norm, the space Lip1(R) becomes a Banach
function algebra on R.

It is shown in [4, p. 123] that the BSE-extension of C1
0 (R) is Lip1(R), and

that Lip0
1(R) is its closed ideal, which itself is a natural Banach function algebra

on R. Moreover it is shown that C0
BSE(ΦC1

0 (R)) = Lip0
1(R) and M(C1

0 (R)) =

C1
b (R).

Definition 3. For f ∈ Cb(Rd), we write ρ(f) = supx,y∈Rd,x 6=y
|f(y)−f(x)|
|y−x| , and

ρ[f ](x) = sup
y∈Rd,x 6=y

|f(y)− f(x)|
|y − x|

(x ∈ Rd).

We put

Lip1(Rd) := {f ∈ Cb(Rd) : ρ(f) <∞}, and

Lip0
1(Rd) := {f ∈ Lip1(Rd) : f and ρ[f ] vanish at infinity}.

One can verify easily that the definitions of Lip0
1(R) in [4] and in Definition

3 above are consistent.
Note that, for f, g ∈ Lip1(Rd) we have

ρ[fg](x) = sup
y∈Rd,y 6=x

|f(y)g(y)− f(x)g(x)|
|y − x|

≤ sup
y∈Rd,y 6=x

[
|g(y)| |f(y)− f(x)|

|y − x|
+ |f(x)| |g(y)− g(x)|

|y − x|

]
≤ ρ[f ](x)‖g‖∞ + |f(x)|ρ(g) (x ∈ Rd).(9)

Lemma 3. (i) For f ∈ Lip1(Rd), we have ρ(f) = sup
x∈Rd

ρ[f ](x).

(ii) For f ∈ C1
b (Rd), we have ρ(f) = sup

a∈S(Rd)

‖Taf‖∞.

(iii) For α, β ∈ C, and f, g ∈ Lip1(Rd), we have

ρ[αf + βg](x) ≤ |α|ρ[f ](x) + |β|ρ[g](x) (x ∈ Rd).

(iv) Lip1(Rd) is an algebra and Lip0
1(Rd) is its ideal.
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Proof. (i) Suppose f ∈ Lip1(Rd). For any x, y ∈ Rd with x 6= y, we have

(10)
|f(y)− f(x)|
|y − x|

≤ ρ[f ](x).

From (10), we have ρ(f) ≤ supx∈Rd ρ[f ](x). Conversely, it is easy to see that
ρ[f ](x) ≤ ρ(f), x ∈ Rd and hence supx∈Rd ρ[f ](x) ≤ ρ(f).

(ii) Suppose f ∈ C1
b (Rd). For any x ∈ Rd and a ∈ S(Rd),

|Taf(x)| = lim
06=h∈R,

h→0

|f(x+ ha)− f(x)|
|h|

= lim
06=h∈R,

h→0

|f(x+ ha)− f(x)|
|(x+ ha)− x|

≤ ρ[f ](x),

and hence

(11) sup
a∈S(Rd)

‖Taf‖∞ ≤ ρ(f).

On the other hand, for any x, y ∈ Rd with x 6= y, if we put a = y−x
|y−x| and

h = |y − x|, then a ∈ S(Rd) and

|f(y)− f(x)|
|y − x|

=
|f(x+ ha)− f(x)|

|h|
= |Taf(x+ θha)|

for some 0 < θ < 1, and hence

(12) ρ(f) ≤ sup
a∈S(Rd)

‖Taf‖∞.

From (11) and (12), we have (ii).
(iii) We can get this inequality by straightforward calculation.
(iv) This follows easily from (9). �

Definition 4. Let n, d be given natural numbers. We define;

Cn−1,1
b (Rd) :=

{
f ∈ Cn−1

b (Rd) : Tei1 ,...,ein−1
f ∈ Lip1(Rd), 1 ≤ i1, . . . , in−1 ≤ d

}
,

Cn−1,1
0 (Rd) :=

{
f ∈ Cn−1

0 (Rd) : Tei1 ,...,ein−1
f ∈ Lip0

1(Rd) , 1 ≤ i1, . . . , in−1 ≤ d
}
,

‖f‖Cn−1,1
b

:= ‖f‖Cn−1
b

+
1

n!
sup

a1,...,an−1∈S(Rd)

ρ(Ta1,...,an−1f)

(f ∈ Cn−1,1
b (Rd)).(13)

In particular, we have C0,1
b (Rd) = Lip1(Rd) and C0,1

0 (Rd) = Lip0
1(Rd).

Proposition 4. ‖f‖Cn−1,1
b

≤ ‖f‖n−1,∞,ρ ≤ dn−1‖f‖Cn−1,1
b

(f ∈ Cn−1,1
b (Rd)),

where ‖f‖n−1,∞,ρ = ‖f‖n−1,∞ + 1
n!

∑
1≤i1,...,in−1≤d ρ(Tei1 ,...,ein−1

f).
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Proof. Suppose f ∈ Cn−1,1
b (Rd). Let aj = (aj1, . . . , a

j
d) ∈ S(Rd), j = 1, . . .,

n− 1 be given arbitrarily. By Lemma 3 and (5), we have

ρ(Ta1,...,an−1f) = sup
x∈Rd

ρ[Ta1,...,an−1f ](x)

≤
∑

1≤i1,...,in−1≤d

|a1
i1 · · · a

n−1
in−1
| sup
x∈Rd

ρ[Tei1 ,...,ein−1
f ](x)

≤
∑

1≤i1,...,in−1≤d

ρ(Tei1 ,...,ein−1
f).(14)

Therefore, by Proposition 1, (13), and (14), we obtain

‖f‖Cn−1,1
b

= ‖f‖Cn−1
b

+
1

n!
sup

a1,...,an−1∈S(Rd)

ρ(Ta1,...,an−1f)

≤ ‖f‖n−1,∞ +
1

n!

∑
1≤i1,...,in−1≤d

ρ(Tei1 ,...,ein−1
f) = ‖f‖n−1,∞,ρ.

Next, we consider the second inequality. From Proposition 1, we have

(15) ‖f‖n−1,∞ ≤ dn−1‖f‖Cn−1
b

.

Further, since ρ(Tei1 ,...,ein−1
f) ≤ supa1,...,an−1∈S(Rd) ρ(Ta1,...,an−1f) for each

1 ≤ i1, . . . , in−1 ≤ d, we have

(16)
∑

1≤i1,...,in−1≤d

ρ(Tei1 ,...,ein−1
f) ≤ dn−1 sup

a1,...,an−1∈S(Rd)

ρ(Ta1,...,an−1f).

From (15), (16), and the definitions of ‖f‖n−1,∞,ρ and ‖f‖Cn−1,1
b

, we get the

desired result. �

Proposition 4 shows that the two norms ‖ ‖n−1,∞,ρ and ‖ ‖Cn−1,1
b

are equiv-

alent. Obviously ‖ ‖n−1,∞,ρ is complete, and hence ‖ ‖Cn−1,1
b

is also complete.

Lemma 4. (i) For f ∈ Cnb (Rd) and a1, . . . , an−1 ∈ S(Rd), we have

ρ(Ta1,...,akf) = sup
a∈S(Rd)

‖Ta1,...,ak,af‖∞, k = 1, . . . , n− 1,

hence Ta1,...,akf ∈ Lip1(Rd).

(ii) If f ∈ Cn−1,1
0 (Rd) and 1 ≤ i1, . . . , in−1 ≤ d, then Tei1 ,...,eik f ∈ Lip

0
1(Rd)

for k = 0, 1, . . . , n− 1.

Proof. (i) Obviously, (i) follows from Lemma 3(ii).
(ii) If n = 1, the assertion is trivial. So we consider the case 2 ≤ n. Sup-

pose f ∈ Cn−1,1
0 (Rd). Then Tei1 ,...,ein−1

f ∈ C0,1
0 (Rd) = Lip0

1(Rd) from the

definition of f ∈ Cn−1,1
0 (Rd).
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Let ε > 0 be given. For each k(0 ≤ k ≤ n − 2), Tei1 ,...,eik f belongs to

C1
0 (Rd), so by Lemma 3(ii), we have

ρ(Tei1 ,...,eik f) = sup
a∈S(Rd)

‖Tei1 ,...,eik ,af‖∞ ≤ (k + 1)!‖f‖Ck+1
b

<∞.

Therefore ρ[Tei1 ,...,eik
f ] is bounded by Lemma 3(i). To show that ρ[Tei1 ,...,eik

f ]

vanishes at infinity, choose M > 0, by (5), such that

(17) sup
a∈S(Rd)

sup
M≤|x|

|Tei1 ,...,eik ,af(x)| ≤ ε, 2‖Tei1 ,...,eik f‖∞ ≤Mε.

Then, if 2M ≤ |x| and y ∈ Rd with y 6= x , we put a = y−x
|y−x| , h = |y− x|, then

for some 0 < θ < 1,

(18)
|Tei1

,...,eik
f(y)−Tei1

,...,eik
f(x)|

|y−x| ≤
{
|Tei1 ,...,eik ,af(x+ θha)| if M > h,

2‖Tei1 ,...,eik f‖∞/M if M ≤ h.

From (17) and (18), we have sup2M≤|x| ρ[Tei1 ,...,eik f ](x) ≤ ε, which implies

that Tei1 ,...,eik f ∈ Lip
0
1(Rd). �

Corollary 1. The algebra Cnb (Rd) is contained in Cn−1,1
b (Rd), and the iden-

tity map of (Cnb (Rd), ‖ ‖Cn
b

) into (Cn−1,1
b (Rd), ‖ ‖Cn−1,1

b
) is an isometry.

Proof. Obviously, this follows from Lemma 4(i). �

In the following Lemma 5 and Proposition 5, we use the following notations;

α0(f) = ‖f‖∞, αk(f) = sup
a1,...,ak∈S(Rd)

‖Ta1,...,akf‖∞, and

β0(f) = ρ(f), βk(f) = sup
a1,...,ak∈S(Rd)

ρ(Ta1,...,akf) (1 ≤ k ≤ n− 1).

Lemma 5. Suppose f, g ∈ Cn−1,1
b (Rd). Then we have

(i) αk(fg) ≤
∑k
j=0

(
k
j

)
αj(f)αk−j(g) (0 ≤ k ≤ n− 1).

(ii) βn−1(fg) ≤
∑n−1
k=0

(
n−1
k

)(
αk(f)βn−1−k(g) + βk(f)αn−1−k(g)

)
.

Proof. (i) By Lemma 2(6) with N = 0, the inequality follows.
(ii) For any choice of a1, . . . , an−1 ∈ S(Rd), we have

(19) Ta1,...,an−1(fg) =

n−1∑
k=0

∑
(#)

Tas1 ,...,ask fTat1 ,...,atn−1−k g,

where (#) =

{
1 ≤ s1 ≤ · · · ≤ sk ≤ n− 1, 1 ≤ t1 ≤ · · · ≤ tn−1−k ≤ n− 1,

{s1, . . . , sk, t1, . . . , tn−1−k} = {1, . . . , n− 1}
}

.
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Operating ρ to the both sides of the equation (19), we have (cf. (9))

ρ(Ta1,...,an−1(fg)) ≤
n−1∑
k=0

∑
(#)

(
‖Tas1 ,...,ask f‖∞ρ(Tat1 ,...,atn−1−k g)

+ ρ(Tas1 ,...,ask f)‖Tat1 ,...,atn−1−k g‖∞
)
.(20)

Taking the supremum in (20) over all choices of a1, . . . , an−1 ∈ S(Rd), we
obtain (ii). �

Proposition 5. (Cn−1,1
b (Rd), ‖ ‖Cn−1,1

b
) is a Banach algebra, and Cn−1,1

0 (Rd)

is its closed ideal.

Proof. In the following calculation, we use the relations βk(h) = αk+1(h) for

h ∈ Ck+1
b (Rd), k = 0, . . . , n − 2 (cf. Lemma 4(i)). Let f, g ∈ Cn−1,1

b (Rd).

Then by Lemma 5 and the formula
(
n−1
k

)
+
(
n−1
k−1

)
=
(
n
k

)
, we have

‖fg‖Cn−1,1
b

=

n−1∑
k=0

1

k!
αk(fg) +

1

n!
βn−1(fg)

≤
n−1∑
k=0

k∑
j=0

1

k!

(
k
j

)
αj(f)αk−j(g)

+
1

n!

(n−1∑
k=0

(
n−1
k

)
αk(f)βn−1−k(g) +

(
n−1
k

)
βk(f)αn−1−k(g)

)

=

n−1∑
k=0

k∑
j=0

1

k!

(
k
j

)
αj(f)αk−j(g) +

1

n!
‖f‖∞βn−1(g)

+
1

n!

n−1∑
k=1

(
n−1
k

)
αk(f)αn−k(g)

+
1

n!

n−2∑
k=0

(
n−1
k

)
αk+1(f)αn−1−k(g) +

1

n!
βn−1(f)‖g‖∞

=

n−1∑
k=0

k∑
j=0

1

j!
αj(f)

1

(k − j)!
αk−j(g) +

1

n!
‖f‖∞βn−1(g)

+
1

n!

(n−1∑
k=1

((
n−1
k

)
+
(
n−1
k−1

))
αk(f)αn−k(g)

)
+

1

n!
βn−1(f)‖g‖∞

=

n−1∑
k=0

k∑
j=0

1

j!
αj(f)

1

(k − j)!
αk−j(g) +

1

n!
‖f‖∞βn−1(g)
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+

n−1∑
k=1

1

k!
αk(f)

1

(n− k)!
αn−k(g) +

1

n!
βn−1(f)‖g‖∞

≤
(n−1∑
k=0

1

k!
αk(f) +

1

n!
βn−1(f)

)(n−1∑
k=0

1

k!
αk(g) +

1

n!
βn−1(g)

)
= ‖f‖Cn−1,1

b
‖g‖Cn−1,1

b
.

Thus ‖ ‖Cn−1,1
b

is submultiplicative, hence (Cn−1,1
b (Rd), ‖ ‖Cn−1,1

b
) is a Banach

algebra.
Let {fN}N be a Cauchy sequence in Cn−1,1

0 (Rd). Then there exists f ∈
Cn−1,1
b (Rd) such that limN→∞ ‖f − fN‖Cn−1,1

b
= 0. Since

‖f − fN‖Cn−1
b
≤ ‖f − fN‖Cn−1,1

b
→ 0 (N →∞),

we have f ∈ Cn−1
0 (Rd) from Proposition 2. Let 1 ≤ i1, . . . , in−1 ≤ d and ε > 0

be given arbitrarily. Let N0 ∈ N be such that ‖f − fN0
‖Cn−1,1

b
≤ ε/(2n!), and

choose M > 0 such that supM≤|x| ρ[Tei1 ,...,ein−1
fN0

](x) ≤ ε/2. Then we have

sup
M≤|x|

ρ[Tei1 ,...,ein−1
f ](x) ≤ sup

M≤|x|
ρ[Tei1 ,...,ein−1

fN0
](x) + n!‖fN0

− f‖Cn−1,1
b

≤ ε/2 + n!(ε/(2n!)) = ε.

Thus ρ[Tei1 ,...,ein−1
f ] vanishes at infinity. This implies that f ∈ Cn−1,1

0 (Rd)

and hence Cn−1,1
0 (Rd) is closed.

Suppose f ∈ Cn−1,1
0 (Rd) and g ∈ Cn−1,1

b (Rd). By Proposition 2, fg be-

longs to Cn−1
0 (Rd). Let 1 ≤ i1, . . . , in−1 ≤ d be arbitrarily chosen. Then

Tei1 ,...,ein−1
(fg) is a sum of the functions in the following (a) or (b);

(a) Tej1 ,...,ejk fTejk+1
,...,ejn−1

g with 1 ≤ k ≤ n−2, 1 ≤ j1 ≤ · · · ≤ jk ≤ n−1,

1 ≤ jk+1 ≤ · · · ≤ jn−1 ≤ n− 1 and {j1, . . . , jn−1} = {1, . . . , n− 1},
(b) fTei1 ,...,ein−1

g, (Tei1 ,...,ein−1
f)g.

In (a), Tej1 ,...,ejk f ∈ Lip
0
1(Rd) and Tej+1,...,ejn−1

g ∈ Lip1(Rd) from Lemma

4, hence functions in (a) belong to Lip0
1(Rd) from Lemma 3(iv). That functions

in (b) belong to Lip0
1(Rd) follows from Definition 4 and Lemma 3(iv).

Therefore Tei1 ,...,ein−1
(fg) ∈ Lip0

1(Rd) for all choices of 1 ≤ i1, . . . , in−1 ≤ d,

and hence fg ∈ Cn−1,1
0 (Rd) follows. �

Proposition 6. Cn−1,1
0 (Rd) is a natural Banach function algebra on Rd, and

by the identification of ϕ ∈ ΦCn−1,1
0 (Rd) with the corresponding xϕ ∈ Rd, Rd is

its Gelfand space and the identity map is the Gelfand transform.
From this, it follows easily that Cn−1,1

0 (Rd) is regular.

Proof. Suppose f ∈ Cn−1,1
0 (Rd) and λ > 0 such that λ − f(x) > 0 for all

x ∈ Rd. Since f ∈ Cn−1
0 (Rd), there exists δ > 0 such that λ− f(x) ≥ δ for all
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x ∈ Rd. Put F = 1
λ−f −

1
λ . Then it follows from the proof of Proposition 3

that F = f
λ(λ−f) ∈ C

n−1
0 (Rd).

We claim that, for any choice of i1, . . . , in−1 ∈ {1, . . . , d}, we have Tei1 ,...,eikF

= Gk

(λ−f)k+1 with Gk ∈ Cn−1−k,1
0 (Rd) for k = 1, . . . , n − 1. Since Tei1F =

Tei1 f
1

(λ−f)2 , the claim is true for k = 1. If the claim is true for k(< n − 1),

then it is easy to see by elementary calculation that the claim is true for k+ 1.
By induction we can conclude that the claim is true for k = 1, 2, . . . , n− 1; in
particular

(21) Tei1 ,...,ein−1
F =

1

(λ− f)n
Gn−1.

From (21) we have that

Tei1 ,...,ein−1
F ∈ C0,1

0 (Rd) = Lip0
1(Rd).

Since Cn−1,1
0 (Rd) is closed under taking the complex conjugation, we can apply

Lemma 1 to conclude that Cn−1,1
0 (Rd) is natural. �

Lemma 6. Suppose f ∈ Lip0
1(Rd), and {eN}∞N=1 is a bounded sequence in

Lip1(Rd) such that eN (x) = 0 if |x| ≤ N .
Then, for given ε > 0, there exists N0 ∈ N such that ρ(feN ) ≤ ε (N0 ≤ N),

that is, ρ(feN ) vanishes as N →∞.

Proof. Put β = supN∈N(‖eN‖∞ + ρ(eN )) <∞. Choose N0 ∈ N such that

max

{
sup

N0/2≤|x|
|f(x)|, sup

N0/2≤|x|
ρ[f ](x)

}
≤ ε/(2β),(22)

3β‖f‖∞ ≤ (N0/2)ε.(23)

Suppose N0 ≤ N . Then, for any x, y ∈ Rd, x 6= y, we have

|f(y)eN (y)− f(x)eN (x)|
|y − x|

≤ |eN (y)| |f(y)− f(x)|
|y − x|

+ |f(x)| |eN (y)− eN (x)|
|y − x|

≤


0 · |f(y)−f(x)|

|y−x| + |f(x)| |0−0|
|y−x| = 0 if |x| < N/2, |y| ≤ N,

β · 2‖f‖∞
N/2 + ‖f‖∞ β

N/2 ≤ ε if |x| < N/2, N < |y| (from (23)),

0 · |f(y)−f(x)|
|y−x| + |f(x)|β ≤ ε/2 if N/2 ≤ |x|, |y| ≤ N (from (22)),

βρ[f ](x) + |f(x)|β ≤ ε if N/2 ≤ |x|, N < |y| (from (22)).

Therefore ρ(feN ) ≤ ε if N0 ≤ N , that is, limN→∞ ρ(feN ) = 0. �

Theorem 2. The algebra (Cn−1,1
0 (Rd), ‖ ‖Cn−1,1

b
) has a bounded approximate

identity composed of elements with compact supports.
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Proof. We will show that the bounded approximate identity {u(d)
N } for Cn0 (Rd),

which is defined in Theorem 1, is also valid as a bounded approximate identity
for Cn−1,1

0 (Rd).

That {u(d)
N } is a bounded sequence in Cn−1,1

0 (Rd) is clear by Corollary 1.

Let f ∈ Cn−1,1
0 (Rd) be given arbitrarily. Then we have

‖f − fu(d)
N ‖Cn−1,1

b

= ‖f − fu(d)
N ‖Cn−1

b
+

1

n!
sup

a1,...,an−1

∈S(Rd)

ρ(Ta1,...,an−1(f(1− u(d)
N )))

≤ ‖f − fu(d)
N ‖Cn−1

b

+
1

n!
sup

a1,...,an−1

∈S(Rd)

∑
1≤i1,...,in−1≤d

| a1
i1 · · · a

n−1
in−1
|ρ(Tei1 ,...,ein−1

(f(1− u(d)
N )))

where ai = (ai1, . . . , a
i
d), i = 1, . . . , n− 1,

≤ ‖f − fu(d)
N ‖Cn−1

b
+

1

n!

∑
1≤i1,...,in−1≤d

ρ(Tei1 ,...,ein−1
(f(1− u(d)

N )))

≤ ‖f − fu(d)
N ‖Cn−1

b

+
1

n!

∑
1≤i1,...,in−1≤d

n−1∑
k=0

∑
(#)

ρ(Teis1 ,...,eisk
f · Teit1 ,...,eitn−1−k

(1− u(d)
N )),(24)

where

(#) =
{

1 ≤ s1 ≤ · · · ≤ sk ≤ n− 1, 1 ≤ t1 ≤ · · · ≤ tn−1−k ≤ n− 1,

{s1, . . . , sk, t1, . . . , tn−1−k} = {1, 2, . . . , n− 1}
}
.

In the last line of (24), for 1 ≤ i1, . . . , in−1 ≤ d, 0 ≤ k ≤ n− 1, we have

Teis1 ,...,eisk
f ∈ Lip0

1(Rd)

by Lemma 4(ii), and {Teit1 ,...,eitn−1−k
(1− u(d)

N )}∞N=1 is a sequence of bounded

functions in Lip1(Rd) which satisfy Teit1 ,...,eitn−1−k
(1−u(d)

N )(x) = 0 if |x| ≤ N ,

so we have by Lemma 6 that ρ(Tei1 ,...,eik f · Teik+1
,...,ein−1

(1 − u(d)
N )) vanishes

as N → ∞. Of course, ‖f − fu(d)
N ‖Cn−1

b
vanishes as N → ∞ by Theorem 1.

Therefore in the last line of (24) each term vanishes as N → ∞. Then (24)

implies that ‖f − fe(d)
N ‖Cn−1,1

b
vanishes as N →∞. �
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4. BSE-extension of Cn
0 (Rd), BSE-, BED-properties of Cn−1,1

0 (Rd),

and the multiplier algebras of Cn
0 (Rd) and Cn−1,1

0 (Rd)

In this section, we prefer to use the expressions CBSE(Cn
0 (Rd))(R

d) and

CBSE(Cn−1,1
0 (Rd))(R

d)) instead of CBSE(ΦCn
0 (Rd)) and CBSE(ΦCn−1,1

0 (Rd)), re-

spectively, because in either of the two cases the Gelfand space is identified
with Rd by Propositions 3 and 6.

Theorem 3. The BSE-extension of Cn0 (Rd) is Cn−1,1
b (Rd); that is,

CBSE(Cn
0 (Rd))(R

d) = Cn−1,1
b (Rd).

Proof. We show first the inclusion ⊆. Suppose σ ∈ CBSE(Cn
0 (Rd))(R

d). We

observe that, for any k(0 ≤ k ≤ n), any choice of 1 ≤ i1, . . . , in ≤ d and
x ∈ Rd, the map Cn0 (Rd) → C : f 7→ 1

k!Tei1 ,...,eik f(x) is a bounded linear

functional which is contained in the unit ball of Cn0 (Rd)∗. By [9, Theorem 4(i)],
there exists a bounded net {fλ}λ∈Λ in Cn0 (Rd) of a bound, say β, such that
limλ∈Λ fλ(x) = σ(x) for all x ∈ Rd. By the natural embedding of Cn0 (Rd) into
its second dual, {fλ}λ∈Λ is a net in the β-ball of Cn0 (Rd)∗∗. Since the β-ball of
Cn0 (Rd)∗∗ is weak*-compact, there exists a weak∗-convergent subnet {fλ′}λ′∈Λ′

of {fλ}λ∈Λ. Hence, for any k(0 ≤ k ≤ n) and any choice 1 ≤ i1, . . . , ik ≤ d,
there exists a bounded function τi1,...,ik on Rd such that

lim
λ′∈Λ′

Tei1 ,...,eik fλ′(x) = τi1,...,ik(x) (x ∈ Rd).

We claim that σ ∈ Cn−1
b (Rd), and that

Tei1 ,...,eikσ(x) = τi1,...,ik(x) (x ∈ Rd, 1 ≤ i1, . . . , ik ≤ d, k = 1, . . . , n− 1),

ρ(Tei1 ,...,ein−1
σ) <∞, 1 ≤ i1, . . . , in−1 ≤ d.

To see this, let x ∈ Rd and h ∈ R \ {0} be given arbitrarily. Then, by a
mean value theorem, we have

σ(x+ hei1)− σ(x)

h
= lim

λ′

fλ′(x+ hei1)− fλ′(x)

h
= lim

λ′
Tei1 fλ′(x+ θλ′hei1)

= lim
λ′

[
Tei1 fλ′(x) +

Tei1 fλ′(x+ θλ′hei1)− Tei1 fλ′(x)

θλ′h
θλ′h

]
= τi1(x) + lim

λ′
Tei1 ,ei1 fλ′(x+ θ̃λ′θλ′hei1)θλ′h

(0 < θλ′ , θ̃λ′ < 1).

Hence∣∣∣∣σ(x+ ei1h)− σ(x)

h
− τi1(x)

∣∣∣∣≤ sup
λ′

∥∥Tei1 ,ei1 fλ′∥∥∞|θλ′h| → 0(h→ 0).

This implies that σ is partially differentiable with respect to xi1 and that
Tei1σ = τi1 . We can repeat this procedure, with respect to xi2 , . . . , xin−1
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successively, to obtain

Tei1 ,...,eikσ = τi1,...,ik (1 ≤ k ≤ n− 1).

Further, we must show that ρ(Tei1 ,...,ein−1
σ) < ∞. (This will also make sure

that Tei1 ,...,ein−1
σ ∈ Cb(Rd).) For any x, y ∈ Rd, x 6= y, we have∣∣∣∣Tei1 ,...,ein−1

σ(x)− Tei1 ,...,ein−1
σ(y)

x− y

∣∣∣∣
=

∣∣∣∣τi1,...,in−1
(x)− τi1,...,in−1

(y)

x− y

∣∣∣∣
= lim

λ′∈Λ′

∣∣∣∣Tei1 ,...,ein−1
fλ′(x)− Tei1 ,...,ein−1

fλ′(y)

x− y

∣∣∣∣
≤ sup

λ′∈Λ′
ρ
(
Tei1 ,...,ein−1

fλ′
)
≤ sup
λ′∈Λ′

n!‖fλ′‖Cn
b
≤ n!β <∞.

Thus we obtain σ ∈ Cn−1,1
b (Rd), that is, CBSE(Cn

0 (Rd))(R
d) ⊆ Cn−1,1

b (Rd).

Next, we show the reverse inclusion ⊇. Let σ ∈ Cn−1,1
b (Rd) be given arbi-

trarily. Choose a nonnegative function v ∈ Cn0 (Rd) such that supp(v) ⊆ B1(=
{x ∈ Rd : |x| ≤ 1}) and

∫
B1
v(x)dx = 1. Set v`(x) = `dv(`x) (x ∈ Rd), and

put σ` = σ∗v`, ` = 1, 2, 3, . . .. Obviously, {σ`} is a sequence of n-times continu-
ously differentiable functions on Rd which converges pointwisely to σ. We will
show that {σ`}` is a bounded sequence in Cnb (Rd). Let a1, . . . , an−1 ∈ S(Rd)
be given arbitrarily. Then

(25) |σ`(x)| ≤
∫
Rd

|σ(x− y)|v`(y)dy ≤ ‖σ‖∞
∫
Rd

v`(y)dy = ‖σ‖∞ (x ∈ Rd),

and

(26)
∣∣Ta1,...,akσ`(x)

∣∣ =

∣∣∣∣∫
Rd

Ta1,...,akσ(x− y)v`(y)dy

∣∣∣∣ ≤ ‖Ta1,...,akσ‖∞
for k = 1, . . . , n− 1. Also we have

ρ(Ta1,...,an−1σ`)(x)

= sup
x,y∈Rd,x 6=y

1

|x− y|

∣∣∣∣∫
Rd

Ta1,...,an−1σ(x− z)v`(z)dz

−
∫
Rd

Ta1,...,an−1σ(y − z)v`(z)dz
∣∣∣∣

≤
∫
Rd

sup
x,y∈Rd,x 6=y

∣∣∣∣Ta1,...,an−1σ(x− z)− Ta1,...,an−1σ(y − z)
x− y

∣∣∣∣v`(z)dz
≤ ρ

(
Ta1,...,an−1σ

)
≤ n!‖σ‖Cn−1,1

b
<∞.(27)

By (25), (26), (27), and the properties of functions {u(d)
` }∞`=1 constructed

in Theorem 1, it follows that {u(d)
` σ`}∞`=1 is a bounded sequence of functions
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in Cn0 (Rd) which converges pointwisely to σ. So σ ∈ CBSE(Cn
0 (Rd))(R

d) by

[9, Theorem 4(i)]. �

Theorem 4. (i) CBSE(Cn−1,1
0 (Rd))(R

d) = CBSE(Cn
0 (Rd))(R

d).

(ii) Cn−1,1
0 (Rd) is a BSE-algebra, that is,

CBSE(Cn−1,1
0 (Rd))(R

d) = M(Cn−1,1
0 (Rd)).

(iii) Cn−1,1
0 (Rd) is a BED-algebra, that is,

C0
BSE(Cn−1,1

0 (Rd))
(Rd) = Cn−1,1

0 (Rd).

Proof. (i) We prove first the inclusion ⊆. Suppose σ ∈ CBSE(Cn−1,1
0 (Rd))(R

d).

By [9, Theorem 4(i)], there exist β < ∞ and a net {fλ}λ∈Λ in Cn−1,1
0 (Rd)

which satisfy ‖fλ‖Cn−1,1
b

≤ β (λ ∈ Λ), and limλ fλ(x) = σ(x) (x ∈ Rd). By

Theorem 3, there exists a constant γ such that

(28) ‖f‖BSE(Cn
0 (Rd)) ≤ γ‖f‖Cn−1,1

b
(f ∈ CBSE(Cn

0 (Rd))(R
d)).

Here, we denote by Ω the directed set of all finite subsets of Rd with inclusion
order, and Λ × Ω is the directed set with the order: (λ1, ω1) ≤ (λ2, ω2) if and
only if λ1 ≤ λ2 and ω1 ≤ ω2.

We claim here that, for each (λ, ω) ∈ Λ× Ω, we can choose fλ,ω ∈ Cn0 (Rd)
which satisfies (a) fλ(x) = fλ,ω(x) (x ∈ ω), and (b) ‖fλ,ω‖Cn

b
≤ γβ + 1. To

show this, we observe that each element fλ is a BSE-function of Cn0 (Rd), and
by (28), that ‖fλ‖BSE(Cn

0 (Rd)) ≤ γ‖fλ‖Cn−1,1
b

≤ γβ. Hence by Helly’s theorem

we can choose fλ,ω ∈ Cn0 (Rd) which satisfies (a) and (b).
We assert that {fλ,ω}(λ,ω)∈Λ×Ω is a bounded net in Cn0 (Rd) which converges

pointwisely to σ. Indeed, take x ∈ Rd arbitrarily and put ω0 = {x} ∈ Ω. Let
ε > 0 be given arbitrarily. Then we can choose λ0 ∈ Λ such that |fλ(x)−σ(x)| ≤
ε (λ0 ≤ λ). Then we have

|fλ,ω(x)− σ(x)| = |fλ(x)− σ(x)| ≤ ε ((λ, ω) ≥ (λ0, ω0)).

This implies that σ ∈ CBSE(Cn
0 (Rd))(R

d). Hence CBSE(Cn−1,1
0 (Rd))(R

d) is con-

tained in CBSE(Cn
0 (Rd))(R

d). The reverse inclusion “⊇” is easily proved by

Corollary 1 and [9, Theorem 4], so we obtain (i).
(ii) By Proposition 5, we have

(29) Cn−1,1
b (Rd) ⊆M(Cn−1,1

0 (Rd)).

On the other hand, since Cn−1,1
0 (Rd) has a bounded approximate identity by

Theorem 2, it follows from [9, Corollary 5] that

(30) M(Cn−1,1
0 (Rd)) ⊆ CBSE(Cn−1,1

0 (Rd))(R
d).

From (29), (30), (i), and Theorem 3, we get the desired result.
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(iii) Since Cn−1,1
0 (Rd) is regular and has a bounded approximate identity

composed of elements with compact supports from Proposition 6 and Theorem
2, (iii) follows from [4, Theorem 4.7]. �

Remark 1. By Theorems 1 and 2, Cn0 (Rd) and Cn−1,1
0 (Rd) are in the class of

commutative Banach algebrasB with the properties (αB) and (βB) in [5, p. 539]
(see also [5, p. 543, Examples 3.3]). Hence we can define and investigate Segal

algebras in Cn0 (Rd) and Cn−1,1
0 (Rd).

Theorem 5. (i) M(Cn0 (Rd)) = Cnb (Rd).
(ii) The algebra Cn0 (Rd) is neither of BSE nor of BED.

Proof. (i) The inclusion ⊇ follows from Proposition 2. To prove the reverse
inclusion, let f ∈ M(Cn0 (Rd)) be given. For each x ∈ Rd and a compact
neighborhood Ux of x, there exists ux ∈ Cn0 (Rd) such that ux = 1 on Ux.
Then fux ∈ Cn0 (Rd) and f = fux on Ux. Therefore f is n-times continuously
differentiable. Since Cn0 (Rd) has a bounded approximate identity by Theorem
1, M(Cn0 (Rd)) is contained in CBSE(Cn

0 (Rd))(R
d) by [9, Corollary 5]. Also

CBSE(Cn
0 (Rd))(R

d) = Cn−1,1
b (Rd) by Theorem 3, and hence f ∈ Cn−1,1

b (Rd).
Then, for any 1 ≤ i1, . . . , in ≤ d, we have

‖Tei1 ,...,ein f‖∞ = sup
x∈Rd

lim
h∈R,h→0

|Tei1 ,...,ein−1
f(hein + x)− Tei1 ,...,ein−1

f(x)|
|h|

≤ sup
x∈Rd

ρ[Tei1 ,...,ein−1
f ](x) = ρ(Tei1 ,...,ein−1

f) <∞,

and hence f ∈ Cnb (Rd).

(ii) Cn0 (Rd) is not of BSE since CBSE(Cn
0 (Rd))(R

d) = Cn−1,1
b (Rd) 6= Cnb (Rd)

= M(Cn0 (Rd)) by Theorem 3 and (i). Then, since Cn0 (Rd) is regular and has
a bounded approximate identity composed of elements with compact supports,
we can apply [4, Theorem 4.7] to conclude that Cn0 (Rd) is not of BED. �

5. Cn−1,1
0 (Rd) as Birtel’s commutative extension of Cn

0 (Rd)

Birtel [1] introduced the notion of commutative extension of commutative
semisimple Banach algebras:

Definition 5 ([1]). Suppose that A is a commutative semisimple Banach al-
gebra. Denote by A′ the norm closed subspace of A∗ generated by ΦA, and
A′ ∗ the Banach space dual of A′. Arens type products A×A′ → A′ : (f, p) 7→
f · p; A′ × A′∗ → A′ : (p, F ) 7→ p · F ; A′∗ × A′∗ → A′∗ : (F,G) 7→ F · G; are
defined by

(i) 〈f · p, g〉 = 〈fg, p〉 =
∑
ϕ∈ΦA

p̂(ϕ)ϕ(f)ϕ(g)

(f, g ∈ A, p =
∑
ϕ∈ΦA

p̂(ϕ)ϕ ∈ span(ΦA));
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(ii) 〈f, p · F 〉 = 〈f · p, F 〉 =
∑
ϕ∈ΦA

p̂(ϕ)F (ϕ)ϕ(f)

(f ∈ A, p =
∑
ϕ∈ΦA

p̂(ϕ)ϕ ∈ span(ΦA)), F ∈ A′∗);

(iii) 〈p, F ·G〉 = 〈p · F,G〉 =
∑
ϕ∈ΦA

p̂(ϕ)F (ϕ)G(ϕ)

(p =
∑
ϕ∈ΦA

p̂(ϕ)ϕ ∈ span(ΦA), F,G ∈ A′∗).

Since span(ΦA) is dense in A′, above (i), (ii), and (iii) are enough to define
products.

Birtel showed that A′ ∗ is a commutative Banach algebra with respect to
the Arens type product and that the natural embedding of A into A′ ∗ is a
continuous isomorphism, and called A′ ∗ the commutative extension of A.

Definition 6. Let DBSE(ΦA) be the space of bounded complex-valued func-
tions σ on ΦA which satisfy BSE-condition with respect to A with norm

(31) ‖σ‖BSE := sup
p∈span(ΦA),‖p‖A∗≤1

∣∣∣∣ ∑
ϕ∈ΦA

p̂(ϕ)σ(ϕ)

∣∣∣∣ <∞.
Using Helly’s theorem, we can prove easily that a bounded function σ on ΦA

belongs to DBSE(ΦA) if and only if there exists a bounded net in A converging
pointwisely to σ, (cf. the proof of Theorem 4(i) of [9]).

If we consider F ∈ A′∗ as a function on A′ defined by F (ζ) = 〈F, ζ〉 (ζ ∈ A′),
π(F ) := F |ΦA is a bounded function on ΦA with a bound ‖F‖A′∗ .
Lemma 7. For each F ∈ A′∗, we have π(F ) ∈ DBSE(ΦA), and π : A′∗ →
DBSE(ΦA) : F 7→ F |ΦA is a surjective isometric isomorphism. Hence we
can identify A′∗ with DBSE(ΦA) through this representation, that is, A′∗ =
DBSE(ΦA).

Proof. Let F ∈ A′∗ be given arbitrarily. Then we have

‖π(F )‖BSE = sup
p∈span(ΦA),‖p‖A∗≤1

∣∣∣∣ ∑
ϕ∈ΦA

p̂(ϕ)σ(ϕ)

∣∣∣∣
= sup
p∈span(ΦA),‖p‖A∗≤1

|〈p, F 〉| = ‖F‖A′∗ .

Therefore π is an isometric map fromA′∗ toDBSE(ΦA). Also if σ ∈ DBSE(ΦA),
we see from (31) that σ corresponds to an element of A′ ∗, which implies that
π is surjective.

By (iii) of Definition 5, Arens type product in DBSE(A)(ΦA) is equal to
pointwise multiplication on ΦA. This proves that π is a homomorphism. �

We can see by Lemma 7 that DBSE(ΦA) is a representation of A′ ∗ as a
Banach function algebra on ΦA. Note that CBSE(ΦA) is the set of complex-
valued continuous functions σ with ‖σ‖BSE <∞. In general, DBSE(ΦA) is not
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equal to CBSE(ΦA). For example, in the case where A = L1(R) with ΦA =
R, CBSE(ΦA) is the set of all the Fourier-Stieltjes transforms of elements in
M(R). On the other hand, DBSE(ΦA) is the set of Fourier-Stieltjes transforms
of elements in M(R), where R is the Bohr compactification of R, and they are
not equal. But in our case where A = Cn0 (Rd), we have the following result.

Theorem 6. DBSE(ΦCn
0 (Rd)) = CBSE(ΦCn

0 (Rd)).

Proof. Suppose σ ∈ DBSE(ΦCn
0 (Rd)). Since σ is a bounded function on Rd

which satisfies the BSE-condition with respect to Cn0 (Rd), by Helly’s theorem,
there is a bounded net {fλ}λ∈Λ in Cn0 (Rd) (with a bound β) converging point-
wisely to σ on Rd. Let x, y ∈ Rd, x 6= y. We put a = x−y

|x−y| , h = |x− y|. Then

we have

|σ(x)− σ(y)|
|x− y|

= lim
λ∈Λ

|fλ(x)− fλ(y)|
|x− y|

= lim
λ∈Λ
|Tafλ(y + θx,yha)|, (with 0 < θx,y < 1)

≤ sup
λ∈Λ
‖Tafλ‖∞ ≤ β.

This implies that σ ∈ Cb(R
d) and hence σ ∈ CBSE(ΦCn

0 (Rd)). The reverse
inclusion is obvious. �

Corollary 2. Cn−1,1
b (Rd) = Cn0 (Rd)′ ∗, that is, Cn−1,1

b (Rd) has a predual.

Proof. The proof follows by an obvious combination of Lemma 7, Theorems 3
and 6. �

Remark 2. A Banach algebra of n-times continuously differentiable functions
on [0, 1] are treated in [8, p. 300] (see also, [2,3,6,7]). But as far as the authors

know, there are no articles in which Cn0 (Rd) or Cn−1,1
0 (Rd) is investigated as

a Banach algebra.
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