• Title/Summary/Keyword: Lipschitz conditions

Search Result 82, Processing Time 0.023 seconds

Some Nonlinear Alternatives in Banach Algebras with Applications II

  • Dhage, B.C.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.281-292
    • /
    • 2005
  • In this paper a nonlinear alternative of Leray-Schauder type is proved in a Banach algebra involving three operators and it is further applied to a functional nonlinear integral equation of mixed type $$x(t)=k(t,x({\mu}(t)))+[f(t,x({\theta}(t)))]\(q(t)+{\int}_0{^{\sigma}^{(t)}}v(t,s)g(s,x({\eta}\(s)))ds\)$$ for proving the existence results in Banach algebras under generalized Lipschitz and $Carath{\acute{e}}odory$ conditions.

  • PDF

CONE VALUED LYAPUNOV TYPE STABILITY ANALYSIS OF NONLINEAR EQUATIONS

  • Chang, Sung-Kag;Oh, Young-Sun;An, Jeong-Hyang
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.835-847
    • /
    • 2000
  • We investigate various ${\Phi}$(t)-stability of comparison differential equations and we obtain necessary and/or sufficient conditions for the asymptotic and uniform asymptotic stability of the differential equations x'=f(t, x).

  • PDF

GLOBAL REGULARITY OF SOLUTIONS TO QUASILINEAR CONORMAL DERIVATIVE PROBLEM WITH CONTROLLED GROWTH

  • Kim, Do-Yoon
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1273-1299
    • /
    • 2012
  • We prove the global regularity of weak solutions to a conormal derivative boundary value problem for quasilinear elliptic equations in divergence form on Lipschitz domains under the controlled growth conditions on the low order terms. The leading coefficients are in the class of BMO functions with small mean oscillations.

OPTIMAL CONTROL PROBLEMS FOR SEMILINEAR EVOLUTION EQUATIONS

  • Jeong, Jin-Mun;Kim, Jin-Ran;Roh, Hyun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.757-769
    • /
    • 2008
  • This paper deals with the existence of optimal controls and maximal principles for semilinear evolution equations with the nonlinear term satisfying Lipschitz continuity. We also present the necessary conditions of optimality which are described by the adjoint state corresponding to the linear equations without a condition of differentiability for nonlinear term.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.

A NOTE ON THE SOLUTION OF A NONLINEAR SINGULAR INTEGRAL EQUATION WITH A SHIFT IN GENERALIZED HOLDER SPACE

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • Using the center instead of the Lipschitz condition we show how to provide weaker sufficient convergence conditions of the modified Newton Kantorovich method for the solution of nonlinear singular integral equations with Curleman shift (NLSIES). Finer error bounds on the distances involved and a more precise information on the location of the solution are also obtained and under the same computational cost than in [1].

  • PDF

STATIONARY SOLUTIONS FOR ITERATED FUNCTION SYSTEMS CONTROLLED BY STATIONARY PROCESSES

  • Lee, O.;Shin, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.737-746
    • /
    • 1999
  • We consider a class of discrete parameter processes on a locally compact Banach space S arising from successive compositions of strictly stationary random maps with state space C(S,S), where C(S,S) is the collection of continuous functions on S into itself. Sufficient conditions for stationary solutions are found. Existence of pth moments and convergence of empirical distributions for trajectories are proved.

  • PDF

A NOTE ON THE SOLUTION OF A NONLINEAR SINGULAR INTEGRAL EQUATION WITH A SHIFT IN GENERALIZED $H{\ddot{O}}LDER$ SPACE

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.23 no.2
    • /
    • pp.257-260
    • /
    • 2007
  • Using the center instead of the Lipschitz condition we show how to provide weaker sufficient convergence conditions of the modified Newton Kantorovich method for the solution of nonlinear singular integral equations with Curleman shift (NLSIES). Finer error bounds on the distances involved and a more precise information on the location of the solution are also obtained and under the same computational cost than in [1].

  • PDF

APPROXIMATE CONTROLLABILITY AND REGULARITY FOR SEMILINEAR RETARDED CONTROL SYSTEMS

  • Jeong, Jin-Mun
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.213-230
    • /
    • 2002
  • We deal with the approximate controllability for semilinear systems with time delay in a Hilbert space. First, we show the existence and uniqueness of solutions of the given systems with the mere general Lipschitz continuity of nonlinear operator f from $R\;\times\;V$ to H. Thereafter, it is shown that the equivalence between the reachable set of the semilinear system and that of its corresponding linear system. Finally, we make a practical application of the conditions to the system with only discrete delay.

CONTROLLABILITY FOR SEMILINEAR STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DELAYS IN HILBERT SPACES

  • Kim, Daewook;Jeong, Jin-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.355-368
    • /
    • 2021
  • In this paper, we investigate necessary and sufficient conditions for the approximate controllability for semilinear stochastic functional differential equations with delays in Hilbert spaces without the strict range condition on the controller even though the equations contain unbounded principal operators, delay terms and local Lipschitz continuity of the nonlinear term.