• Title/Summary/Keyword: Lipid uptake

Search Result 145, Processing Time 0.028 seconds

Characterization and Modification of Milk Lipids (유지방의 특성과 변화)

  • Yeo, Yeong-Geun;Choe, Byeong-Guk;Im, A-Yeong;Kim, Hyo-Jeong;Kim, Su-Min;Kim, Dae-Gon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.119-136
    • /
    • 1998
  • The lipids of milk provide energy and many essential nutrients for the newborn animal. They also have distinctive physical properties that affect the processing of dairy products. Milk fat globules mainly consist of neutral lipids like triacylglycerols, whereas the globule membranes contain the complex lipids mostly, Phospholipids are a small but important fraction of the milk lipids and are found mainly in the milk fat globule membrane and other membranous material in the skim-milk phase. The milk fats of ruminant animals are characterized by the presence of relatively high concentrations of short-chain fatty acids, especially butyric and hexanoic acids, which are rarely found in milks of non-ruminants. The fatty acids of milk lipids arise from de novo synthesis in the mammary gland and uptake from the circulating blood. The fatty acid compositions of milks are usually complex and distinctive, depending on the nature of the fatty acids synthesized de novo in the mammary gland and those received from the diet in each species. The content and composition of milks from different species vary widely; presumably, these are evolutionary adaptations to differing environments. The actual process by which these globules are formed is unkonwn, but there are indications that triglyceride-containing vesicles which bleb from endoplasmic reticulum may serve as nucleation sites for globules. Recent studies on milk have centred on the manipulation of milk lipids to increase specific fatty acids, i.e. 20-carbon omega-3 fatty acids (eicosapentaenoic acid 20:5n3, decosahexaenoic acid 22:6n3) from marine sources because the fatty acids are closely associated with a decreased risk of coronary heart disease.

  • PDF

Metabolic Syndromes Improvement and Its Related Factors among Health Checkup Examinees in a University Hospital (일개 대학병원 건강검진 수진자의 대사증후군 호전과 관련요인)

  • Jo, Mal-Suk;Suh, Soon-Rim;Kim, Keon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.147-156
    • /
    • 2016
  • The purpose of this study was to identify the factors associated with the improvement of metabolic syndrome, and provide basic data for the health management of clients. The subjects were 280 adults who were diagnosed with metabolic syndrome in 2013, and who were examined from January 2013 to December 2014. The data were analyzed by descriptive statistics, t-test, ${\chi}^2$-test, and logistic regression analysis with SPSS WIN 18. The change rate from 3 to 2 risk factors was 60.6% among those clients whose metabolic syndrome improved. The improvement group showed a decrease in their waist circumference, systolic blood pressure, triglycerides and increase in their HDL cholesterol in 2014 compared to 2013, as well as decreased drinking, increased exercise, proper calorie, protein and carbohydrate uptake, and increased consumption of a lipid lowering agent. Exercise, calorie uptake and maintenance of an oral hypoglycemic drug influenced the improvement of the metabolic syndrome. In conclusion, it is necessary to have an intervention program including exercise enhancement and diet modification and to reinforce the health education for continuing health management.

Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes (C2C12 myotube에서 Insulin-like growth factor-I 이 FATP1 발현에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1284-1290
    • /
    • 2014
  • Fatty acid transporter protein 1 (FATP1) is highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism. However, the influence of insulin-like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on FATP1 in skeletal muscle cells has not been demonstrated. To investigate the effect of IGF-I on FATP1 and the expression of the IGFBP5 protein, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I at different time points. The results showed that IGF-I increased FATP1 and IGFBP5 protein expression in a time-dependent manner. To determine whether this induction of FATP1 by the IGF-I treatment was regulated pretranslationally, the mRNA level of FATP1 was measured by real-time quantitative PCR. The IGF-I treatment resulted in very rapid induction of the FATP1 mRNA transcript in C2C12 myotubes. FATP1 mRNA increased 169% and 132% after 24 and 48 h of the IGF-I treatment, respectively, and it returned to control levels after 72 h of the treatment, suggesting that the FATP1 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. This is the first evidence that IGF-I can regulate the expression of FATP1. In conclusion, IGF-I induced rapid transcriptional modification of the FATP1 gene in C2C12 skeletal muscle cells and had modulating effects on fatty acid uptake proteins and oxidative proteins.

Methanol extract of Lespedeza maximowiczii var. tricolor Nakai improves glucose metabolism through PPARγ agonist and insulin-mimetic effect in 3T3-L1 adipocytes and db/db mice (삼색싸리 메탄올 추출물의 3T3-L1지방세포와 db/db 마우스에서의 PPARγ 작용제와 인슐린 유사효과를 통한 혈당조절 개선효과)

  • Park, Chul-Min;Kim, Hui;Rhyu, Dong-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.417-424
    • /
    • 2019
  • The aim of this study is to investigate the effect of Lespedeza maximowiczii var. tricolor Nakai (LMTN) on glucose metabolism. LMTN extract significantly enhanced the glucose uptake and lipid accumulation in 3T3-L1 adipocytes compared with control. Also, LMTN extract in 3T3-L1 adipocytes significantly increased the protein expression of peroxisome proliferator-activated receptor (PPAR)γ, insulin receptor substrate-1, and glucose transporter (GLUT)4. The regulatory effect on glucose uptake or insulin signal transduction of LMTM extract was lower than troglitazone or pinitol such as the positive control, but increased PPARγ activation. Additionally, LMTM extract has an insulin-mimetic effect. In db/db mice, LMTN extract (250 mg/kg BW) significantly reduced water and food intake, blood glucose, and level of plasma triglyceride and total cholesterol. Furthermore, the expression of PPARã and GLUT4 mRNA in adipose or muscle tissue effectively was increased by oral treatment of LMTN extract. Thus, our results suggest that LMTN extract improves the glucose metabolism through PPARγ and insulin-mimetic effect in 3T3-L1 adipocytes and db/db mice.

Insulin-like Growth Factor-I Regulates the FAT/CD36 Expression in C2C12 Skeletal Muscle Cells (C2C12 골격근 세포에서 FAT/CD36 발현 조절에 있어 Insulin-like growth factor-I이 미치는 영향)

  • Kim, Hye Jin;Yoon, Hae Min;Kim, Tae Young;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.758-763
    • /
    • 2016
  • Fatty acid transporters are key mediators of skeletal muscle lipid metabolism. Several protein groups have been implicated in cellular long-chain fatty acid uptake or oxidation, including fatty acid transporter proteins (FATPs), the plasma membrane fatty acid-binding protein (FABPpm), and the fatty acid translocase (FAT/CD36). FAT/CD36 is highly expressed in skeletal muscle and known to be regulated by various factors such as exercise and hormones. Insulin-like growth factor-I (IGF-I) is a well-known regulator of skeletal muscle cells. However, it has not been studied whether there is any interaction between IGF-I and FAT/CD36 in skeletal muscle cells. In this study, the effects of IGF-I treatment on FAT/CD36 induction were examined. Differentiated C2C12 cells were treated with 20 ng/ml of IGF-I at different time points. Treatment of C2C12 cells with IGF-I resulted in increased FAT/CD36 mRNA and protein expression. After 24 and 48 hr of IGF-I treatment, FAT/CD36 mRNA increased 89% and 24% respectively. The increase of both proteins returned to the control level after 72 hr of IGF-I treatment, suggesting that the FAT/CD36 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. These results suggest that IGF-I can regulate the expression of FAT/CD36 in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the FAT/CD36 gene in C2C12 skeletal muscle cells and has modulating effects on fatty acid uptake proteins as well as oxidative proteins.

Chemical Composition and Biological Activities of Elsholtzia ciliata (Thunb.) Hylander (향유의 향기성분 분석 및 생리활성 검정)

  • Jeong, Jae-Hoon;Lim, Heung-Bin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.6
    • /
    • pp.463-472
    • /
    • 2004
  • This study was carried out to investigate the chemical composition of essential oils, absolutes and oleoresins isolated from Elsholtzia ciliata and the biological activities of them. Yields of essential oils, absolutes and oleoresins were 0.34%, 11.33% and 15.24%, respectively. The major component was naginate ketone in essential oils, methyl linolenate in absolutes and 9,12,15-octadecatrienoic acid in oleoresins. Eseential oils and oleoresins showed the inhibitory activities in enzyme-dependent, enzyme-independent and autooxidatve lipid peroxidation systems. $EC_{50}$ values in neutral red uptake assays 24 h of exposure times were $23.3\;{\mu}g/m{\ell}$, $341.0\;{\mu}g/m{\ell}$ and $17.2\;{\mu}g/m{\ell}$ in essential oils, absolutes and oleoresins, respectively, and essential oils and oleoresins showed the cytotoxic effect at the only high dose. Absolutes and oleoresins did not show antibiotic and mutagenic activities. On the contrary, essential oils with over $500\;{\mu}g/plate$ showed antibiotic and mutagenic activities in Ames test. Essential oils and oleoresins have a prolongating effect the ciliostasis of rat trachea.

The Effects of Aerobic Training Intensity Difference on Cardiovascular Disease Pathophysiological Pathways Linking Oxidative Tissue Damage in Obese Children (유산소 훈련 강도 차이가 비만 어린이의 산화적 조직 손상에 의한 심혈관질환 병태생리적 경로에 미치는 영향)

  • Woo, Jin-Hee;Shin, Ki-Ok;Kim, Keun-Soo;Kim, Young-Il;Kang, Sung-Hwun
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1394-1401
    • /
    • 2010
  • The purpose of this study was to examine the effect of 12 wk of aerobic exercise on lipid profiles, antioxidant enzyme activities, oxidative products, and autonomic nervous activity (ANA) in children with obesity. We studied 16 children with obesity and 19 age-matched normal weight controls over a period of 12 wk, during which time moderate intense running exercise was performed. Measurements included peak oxygen uptake, body composition, blood lipid profiles, ox-LDL, 8-OHdG, SOD, GPx activities, total mRNA, and ANA. There were no differences in body weight between periods in the OW group, but body weight increased after 12 wk in OR and CO groups. There were no differences in WHR between periods in the OR and CO groups, but the WHR values decreased after 12 weeks in the OW group. In the obese group, the baseline TG was higher than in the controls (p<0.05), while the ANA level was lower. There were differences in antioxidant enzyme gene expressions between periods in all groups. In conclusion, oxidative damage and antioxidant enzyme activities in obese children were found to be similar to those of normal weight children. However, TG was higher and ANA was lower in obese children than in normal weight children. These results indicated that increased TG and decreased ANA levels begins in childhood in obese patients. Also, regular aerobic exercise may modify the antioxidant enzyme gene expression in early life.

Physicochemical Characteristics of Soybean Seed Coat and Their Relationship to Seed Lustre (콩 종피의 이화학적 특성과 광택과의 관계)

  • Kim Sun-Lim;Chi Hee-Youn;Son Jong-Rok;Park Nam-Kyu;Ryu Su-Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.123-131
    • /
    • 2005
  • Lipid and protein contents in whole soybean seeds have negative correlation (r=-0.693**), however, these components in seed coat showed positive correlation (r=0.746**). Fatty acids in whole soybean seeds were higher in the order of $C_{18:2}>C_{18:1}>C_{16:0}>C_{18:3}>C_{18:0}$, while those of seed coat were higher in the order of $C_{18:3}>C_{18:2}>C_{18:0}>C_{16:0}>C_{18:1}$. The average content of total amino acid in twenty Korean soybean varieties was 38,938.7 mg/100 g, while that of seed coat was 4,418.4 mg/100g. Glutamic acid showed the highest composition rate $(16.4\%)$ in whole soybean seeds, while glycine was the highest in seed coat and their composition rate was $23.8\%$. The surface of shiny-lustre seed coats was smooth and their pore size was observed smaller than dull-lustre ones. Significant quadratic regression was observed among seed coat lightness, seed coat thickness, protein, lipid, unsaturated fatty acid and crude fiber. Fucose, rhamnose, glucose, mannose, galactose, arabinose and xylose were detected as a neutral mono-saccharides in the seed coats. The arabinose and xylose showed significant correlation with seed coat lightness. The unsaturated fatty acid was significantly correlated with seed coat lightness (r=0.726**). Water absorption rate was low in the thick seed coat varieties, but the rate was high in the shiny seed coat varieties. From the obtained results, it was considered that the thinner and brighter seed coat varieties were much favorable to increase the water absorption rate than thicker and darker seed coat ones.

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.

Anti-hyperglycemic and Anti-hyperlipidemic Activities of Acanthopanax Senticosus Herbal Acupuncture in C57BL/6J ob/ob Mice

  • Lee, Sang-Keel;Kim, Yong-Suk;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.1-19
    • /
    • 2006
  • Objectives : The aim of this study was to investigate the hypoglycemic and hypolipidemic activities and mechanisms of Acanthopanax senticosus (AS) herbal acupuncture. Methods : Anti-diabetic and anti-steatotic activity of the AS herbal acupuncture was investigated on C57BL/6J ob/ob mice. After random grouping at the age of 9 weeks, the herbal acupuncture groups were injected subcutaneously at the left and right Gansu (BL18) corresponding acupuncture points alternately on exactly the same time every day with 0.1ml of either 400 mg/kg or 800 mg/kg of AS (AS400 and AS800) for 8-week period. As a positive control, metformin was administrated at a dose of 300 mg/kg (MT300). Body weights were measured weekly, and on every other week blood was collected for blood glucose analysis. At the end of study, blood was also collected for determination of plasma insulin and lipid levels, after which they were killed and periepidydimal fat, liver, muscle, and pancreas were immediately removed. The removed tissues were instantly soaked in liquid nitrogen and stored at $-70^{\circ}C$ for morphological examination and mRNA analysis. Results : The AS herbal acupuncture significantly prevented weight gain on C57BL/6J ob/ob mice. The AS herbal acupuncture lowered blood glucose and improved glucose tolerance in C57BL/6J ob/ob mice. The increase of insulin response during the OGTT was inhibited by the AS herbal acupuncture. Insulin sensitivity of skeletal tissue was enhanced. Plasma lipid levels were significantly improved in the AS herbal acupuncture groups. The AS herbal acupuncture decreased hepatic lipogenesis and hepatic triglyceride production, and increased fatty acid (FA) transporter that involves in FA uptake. The AS herbal acupuncture inhibited the increase of liver mass by prevention of the accumulation of TG but did not inhibit weight gain of fat tissue on C57BL/6J ob/ob mice. Conclusion : In summary, we have demonstrated several unique properties of the AS herbal acupuncture in decreasing body weight, and reversing insulin resistance and hepatic steatosis in ob/ob mice. This AS herbal acupuncture acts as an insulin sensitizer and specifically decreases circulating glucose and lipids, and suppresses hepatic lipogenesis.

  • PDF