Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle |
Muroya, Susumu
(Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS))
Ogasawara, Hideki (Field Science Center, School of Veterinary Medicine, Kitasato University) Nohara, Kana (Field Science Center, School of Veterinary Medicine, Kitasato University) Oe, Mika (Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS)) Ojima, Koichi (Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS)) Hojito, Masayuki (Field Science Center, School of Veterinary Medicine, Kitasato University) |
1 | Masi LN, Serdan TDA, Levada-Pires AC, et al. Regulation of gene expression by exercise-related micrornas. Cell Physiol Biochem 2016;39:2381-97. https://doi.org/10.1159/000452507 DOI |
2 | Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. DOI |
3 | Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733-41. https://doi. org/10.1373/clinchem.2010.147405 DOI |
4 | Shrestha A, Mukhametshina RT, Taghizadeh S, et al. MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease. Dev Dyn 2017;246:285-90. https://doi.org/10.1002/dvdy.24477 DOI |
5 | Sjogren RJO, Lindgren Niss MHL, Krook A. Skeletal muscle microRNAs: roles in differentiation, disease and exercise. In: Spiegelman B, editor. Hormones, metabolism and the benefits of exercise. Cham, Switzerland: Springer; 2017. p. 67-81. |
6 | Hu J, Xu Y, Hao J, Wang S, Li C, Meng S. MiR-122 in hepatic function and liver diseases. Protein Cell 2012;3:364-71. https://doi.org/10.1007/s13238-012-2036-3 DOI |
7 | McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: mechanisms of uptake. J Circ Biomark 2015;4:7. https://doi.org/10.5772/61186 DOI |
8 | Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 2017;28:3-18. https://doi.org/10.1016/j.tem.2016.10.003 DOI |
9 | Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2017;542:450-5. https://doi.org/10.1038/nature21365 DOI |
10 | Meale SJ, Romao JM, He ML, Chaves AV, McAllister TA, Guan LL. Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues. J Anim Sci 2014;92:3328-37. https://doi.org/10.2527/jas.2014-7710 DOI |
11 | Mobuchon L, Le Guillou S, Marthey S, et al. Sunflower oil supplementation affects the expression of miR-20a-5p and miR-142-5p in the lactating bovine mammary gland. PLoS One 2017;12:e0185511. https://doi.org/10.1371/journal.pone. 0185511 DOI |
12 | Ogasawara J, Izawa T, Sakurai T, et al. Habitual exercise training acts as a physiological stimulator for constant activation of lipolytic enzymes in rat primary white adipocytes. Biochem Biophys Res Commun 2015;464:348-53. https://doi.org/10.1016/j.bbrc.2015.06.157 DOI |
13 | van Hall G. The physiological regulation of skeletal muscle fatty acid supply and oxidation during moderate-intensity exercise. Sports Med 2015;45:23-32. https://doi.org/10.1007/s40279-015-0394-8 DOI |
14 | Muroya S, Ogasawara H, Hojito M. Grazing affects exosomal circulating microRNAs in cattle. PLoS One 2015;10:e0136475. https://doi.org/10.1371/journal.pone.0136475 DOI |
15 | Horikawa A, Ogasawara H, Okada K, Kobayashi M, Muroya S, Hojito M. Grazing-induced changes in muscle microRNA-206 and -208b expression in association with myogenic gene expression in cattle. Anim Sci J 2015;86:952-60. https://doi.org/10.1111/asj.12381 DOI |
16 | Muroya S, Shibata M, Hayashi M, Oe M, Ojima K. Differences in Circulating microRNAs between grazing and grain-fed wagyu cattle are associated with altered expression of intramuscular microRNA, the potential target PTEN, and lipogenic genes. PLoS One 2016;11:e0162496. https://doi.org/10.1371/journal.pone.0162496 DOI |
17 | Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012;8:457-65. https://doi.org/10.1038/nrendo.2012.49 DOI |
18 | Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011;286:12983-90. https://doi.org/10.1074/jbc.M110.215889 DOI |
19 | Baggish AL, Hale A, Weiner RB, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol 2011;589:3983-94. https://doi.org/10.1113/jphysiol.2011.213363 DOI |
20 | Whitham M, Parker BL, Friedrichsen M, et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 2018;27:237-51.e4. https://doi.org/10.1016/j.cmet. 2017.12.001 DOI |
21 | Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. J Biol Chem 2003;278:47636-43. https://doi.org/10.1074/jbc.M307680200 DOI |
22 | Ogasawara J, Sakurai T, Kizaki T, et al. Higher levels of ATGL are associated with exercise-induced enhancement of lipolysis in rat epididymal adipocytes. PLoS One 2012;7:e40876. https://doi.org/10.1371/journal.pone.0040876 DOI |
23 | Tsiloulis T, Watt MJ. Exercise and the regulation of adipose tissue metabolism. Prog Mol Biol Transl Sci 2015;135:175-201. https://doi.org/10.1016/bs.pmbts.2015.06.016 DOI |
24 | Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS. PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab 2007;293:E1736-45. https://doi.org/10.1152/ajpendo. 00122.2007 DOI |
25 | Schroeder F, Petrescu AD, Huang H, et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 2008;43:1-17. https://doi.org/10.1007/s11745-007-3111-z DOI |
26 | Jeppesen J, Jordy AB, Sjoberg KA, et al. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle. PLoS One 2012;7:e29391. https://doi.org/10.1371/journal.pone.0029391 DOI |
27 | Staiger H, Haas C, Machann J, et al. Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans. Diabetes 2009;58:579-89. https://doi. org/10.2337/db07-1438 DOI |
28 | McQueen AE, Kanamaluru D, Yan K, et al. The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure. J Biol Chem 2017;292:16122-34. https://doi.org/10.1074/jbc.M117.803973 DOI |
29 | Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016;12:504-17. https://doi.org/10.1038/nrendo.2016.76 DOI |
30 | Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 2016;23:770-84. https://doi.org/10.1016/j.cmet.2016.04.011 DOI |
31 | Wang H, Wang B. Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease. Biomed Rep 2016;5: 296-300. https://doi.org/10.3892/br.2016.725 DOI |
32 | Zhang B, Yang Y, Xiang L, Zhao Z, Ye R. Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes. 2019;234:16692-702. https://doi.org/10.1002/jcp.28354 DOI |
33 | Roh SG, Suzuki Y, Gotoh T, Tatsumi R, Katoh K. Physiological roles of adipokines, hepatokines, and myokines in ruminants. Asian-Australas J Anim Sci 2016;29:1-15. https://doi.org/10.5713/ajas.16.0001R DOI |
34 | Romacho T, Elsen M, Rohrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol 2014;210:733-53. https://doi.org/10.1111/apha.12246 DOI |
35 | Brandao BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: the role of small non-coding RNAs. Redox Biol 2017;12:82-102. https://doi.org/10.1016/j.redox.2017.01.020 DOI |
36 | Wilson RA, Deasy W, Hayes A, Cooke MB. High fat diet and associated changes in the expression of micro-RNAs in tissue: Lessons learned from animal studies. Mol Nutr Food Res 2017;61:1600943. https://doi.org/10.1002/mnfr.20160 0943 DOI |
37 | Shi C, Huang F, Gu X, et al. Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget 2016;7:40830-45. https://doi.org/10.18632/oncotarget.8518 DOI |