Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.12.1284

Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes  

Kim, Hye Jin (Department of Exercise Science, College of Health Sciences, Ewha Womans University)
Lee, Won Jun (Department of Exercise Science, College of Health Sciences, Ewha Womans University)
Publication Information
Journal of Life Science / v.24, no.12, 2014 , pp. 1284-1290 More about this Journal
Abstract
Fatty acid transporter protein 1 (FATP1) is highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism. However, the influence of insulin-like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on FATP1 in skeletal muscle cells has not been demonstrated. To investigate the effect of IGF-I on FATP1 and the expression of the IGFBP5 protein, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I at different time points. The results showed that IGF-I increased FATP1 and IGFBP5 protein expression in a time-dependent manner. To determine whether this induction of FATP1 by the IGF-I treatment was regulated pretranslationally, the mRNA level of FATP1 was measured by real-time quantitative PCR. The IGF-I treatment resulted in very rapid induction of the FATP1 mRNA transcript in C2C12 myotubes. FATP1 mRNA increased 169% and 132% after 24 and 48 h of the IGF-I treatment, respectively, and it returned to control levels after 72 h of the treatment, suggesting that the FATP1 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. This is the first evidence that IGF-I can regulate the expression of FATP1. In conclusion, IGF-I induced rapid transcriptional modification of the FATP1 gene in C2C12 skeletal muscle cells and had modulating effects on fatty acid uptake proteins and oxidative proteins.
Keywords
C2C12 myotube; FATP1 (Fatty acid transporter protein 1); fatty acids; IGF-I lipid metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, J. K., Gimeno, R. E., Higashimori, T., Kim, H. J., Choi, H., Punreddy, S., Mozell, R. L., Tan, G., Stricker-Krongrad, A., Hirsch, D. J., Fillmore, J. J., Liu, Z. X., Dong, J., Cline, G., Stahl, A., Lodish, H. F. and Shulman, G. I. 2004. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest 113, 756-763.   DOI
2 Krssak, M., Falk Petersen, K., Dresner, A., DiPietro, L. Vogel, S. M., Rothman, D. L. Shulman, G. I. and Roden, M. 1999. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a $^1H$ NMR spectroscopy study. Diabetologia 42, 113-116.   DOI   ScienceOn
3 Norby, F. L., Wold, L. E., Duan, J. H., Hintz, K. K. and Ren, J. 2002. IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol Endocrinol Metab 283, E658-666.   DOI
4 Palanivel, R. and Sweeney, G. 2005. Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin. FEBS Lett 579, 5049-5054.   DOI
5 Schmitz-Peiffer, C. 2000. Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal 12, 583-594.   DOI
6 Schroeder, F., Jolly, C. A., Cho, T. H. and Frolov, A. 1998. Fatty acid binding protein isoforms: structure and function. Chem Phys Lipids 92, 1-25.   DOI   ScienceOn
7 Simoneau, J., Veerkamp, J., Turcotte, L. and Kelly, D. 1999. Markers of capacity to utilize fatty acids in human skeletal muscle; relation to insulin resistance and obesity and effects of weight loss. FASEB J 13, 2051-2060.   DOI
8 Tunstall, R. J., Mehan, K. A., Wadley, G. D., Collier, G. R., Bonen, A., Hargreaves, M. and Cameron-Smith, D. 2002. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283, E66-72.   DOI
9 Van Loon, L., Koopman, R., Manders, R., Van Der Weegen, W., Van Kranenburg, G. and Keizer, H. 2004. Intramyocellular lipid content in type 2 diabetes patients compared to overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287, E558-565.   DOI
10 Wu, Q., Ortegon, A. M., Tsang, B., Doege, H., Feingold, K. R. and Stahl, A. 2006. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol 26, 3455-3467.   DOI
11 Carroll, P. V., Christ, E. R., Umpleby, A. M., Gowrie, I., Jackson, N., Bowes, S. B., Hovorka, R., Croos, P., Sonksen, P. H. and Russell-Jones, D. L. 2000. IGF-I treatment in adults with type 1 diabetes-Effects on glucose and protein metabolism in the fasting state and during a hyperinsulinemic-euglycemic amino acid clamp. Diabetes 49, 789-796.   DOI
12 Dube, J. J., Amati, F., Stefanovic-racic, M., Toledo, F. G., Sauers, S. E. and Goodpaster, B. H. 2008. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab 294, E882-888.   DOI
13 Baker, J., Liu, J. P., Robertson, E. J. and Efstratiadis, A. 1993. Role of insulin-like growth-factors in embryonic and postnatal-growth. Cell 75, 73-82.   DOI
14 Boden, G., Lebed, B., Schatz, M., Homko, C. and Lemieux, S. 2001. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50, 1612-1617.   DOI   ScienceOn
15 Garcia-Martinez, C., Marotta, M., Moore-Carrasco, R., Guitart, M., Camps, M., Busquets, S., Montell, E. and Gomez-Foix, A. M. 2005. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am J Physiol Cell Physiol 288, C1264-1272.   DOI
16 D'Ercole, A. J., Ye, P. and O'Kusky, J. R. 2002. Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36, 209-220.   DOI
17 Delafontaine, P., Song, Y. H. and Li, Y. 2004. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 24, 435-444.   DOI   ScienceOn
18 Duan, C., Ren, H. and Gao, S. 2010. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 167, 344-351.   DOI
19 Gimeno, R. E. 2007. Fatty acid transport proteins. Curr Opin Lipidol 18, 271-276.   DOI
20 Hajri, T., Han., X. X., Bonen, A. and Abumrad, N. A. 2002. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 109, 1381-1389.   DOI
21 Hirsch, D., Stahl, A. and Lodish, H. F. 1998. A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA 95, 8625-8629.   DOI   ScienceOn
22 Kiens, B., Roepstorff, C., Glatz, J. F., Bonen, A., Schjerling, P., Knudsen, J. and Nielsen, J. N. 2004. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol 97, 1209-1218.   DOI
23 Holloway, G. P., Chou, C. J., Lally, J., Stellingwerff, T., Maher, A. C., Gavrilova, O., Haluzik, M., Alkhateeb, H., Reitman, M. L. and Bonen, A. 2011. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Diabetologia 54, 1457-1467.   DOI
24 Kawaguchi, M., Tamura, Y., Kakehi, S., Takeno, K., Sakurai, Y., Watanabe, T., Funayama, T., Sato, F., Ikeda, S., Ogura, Y., Saga, N., Naito, H., Fujitani, Y., Kanazawa, A., Kawamori, R. and Watada, H. 2014. Association between expression of FABPpm in skeletal muscle and insulin sensitivity in intramyocellular lipid-accumulated non-obese men. J Clin Endocrinol Metab 99, 3343-3352.   DOI
25 Kazantzis, M. and Stahl, A. 2012. Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta 1821, 852-857.   DOI
26 Nickerson, J. G., Alkhateed, H., Benton, C. R., Lally, J., Nickerson, J., Han, X. X., Wilson, M. H., Jain, S. S., Snook, L. A., Glatz, J. F., Chabowski, A., Luiken, J. J. and Bonen, A. 2009. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J Biol Chem 284, 16522-16530.   DOI
27 Van Loon, L. and Goodpaster, B. 2006. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch 451, 606-616.   DOI
28 Jones, J. I. and Clemmons, D. R. 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16, 3-34.
29 Kim, J. K., Fillmore, J. J., Chen, Y., Yu, C., Moore, I. K., Pypaert, M., Peer Lutz, E., Kako, Y., Velez-Carrasco, W., Goldberg, I. J., Breslow, J. L. and Shulman, G. I. 2001. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 98, 7522-7527.   DOI   ScienceOn