Browse > Article
http://dx.doi.org/10.3839/jabc.2019.057

Methanol extract of Lespedeza maximowiczii var. tricolor Nakai improves glucose metabolism through PPARγ agonist and insulin-mimetic effect in 3T3-L1 adipocytes and db/db mice  

Park, Chul-Min (Environmental Technology Research Institute, Seoul National University of Science and Technology)
Kim, Hui (Dept. of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University)
Rhyu, Dong-Young (Dept. of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University)
Publication Information
Journal of Applied Biological Chemistry / v.62, no.4, 2019 , pp. 417-424 More about this Journal
Abstract
The aim of this study is to investigate the effect of Lespedeza maximowiczii var. tricolor Nakai (LMTN) on glucose metabolism. LMTN extract significantly enhanced the glucose uptake and lipid accumulation in 3T3-L1 adipocytes compared with control. Also, LMTN extract in 3T3-L1 adipocytes significantly increased the protein expression of peroxisome proliferator-activated receptor (PPAR)γ, insulin receptor substrate-1, and glucose transporter (GLUT)4. The regulatory effect on glucose uptake or insulin signal transduction of LMTM extract was lower than troglitazone or pinitol such as the positive control, but increased PPARγ activation. Additionally, LMTM extract has an insulin-mimetic effect. In db/db mice, LMTN extract (250 mg/kg BW) significantly reduced water and food intake, blood glucose, and level of plasma triglyceride and total cholesterol. Furthermore, the expression of PPARã and GLUT4 mRNA in adipose or muscle tissue effectively was increased by oral treatment of LMTN extract. Thus, our results suggest that LMTN extract improves the glucose metabolism through PPARγ and insulin-mimetic effect in 3T3-L1 adipocytes and db/db mice.
Keywords
C57BLKS/J Iar-db/db mice; Insulin signal transduction; Lespedeza maximowiczii var. tricolor; Peroxisome proliferator-activated receptor; 3T3-L1 adipocytes;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim DY, Park KK, Lee SK, Lee SE, Hwang JK (2011). Cornus kousa F.Buerger ex Miquel increases glucose uptake through activation of peroxisome proliferator-activated receptor and insulin sensitization. J Ethnopharmacol 133: 803-809   DOI
2 Guest PC, Rahmoune H (2019) Characterization of the db/db Mouse Model of Type 2 Diabetes. Methods Mol Biol 1916: 195-201   DOI
3 Min KH, Kim HJ, Jeon YJ, Han JS (2011) Ishige okamurae ameliorates hyperglycemia and insulin resistance in C57BL/KsJ-db/db mice. Diabetes Res Clin Pract 93: 70-76   DOI
4 Mokdad AH, Ford ES, Bowman BA, Nelson DE, Engelgau MM, Vinicor F, Marks JS (2000) Diabetes trends in the U.S.: 1990-1998. Diabetes Care 23: 1278-1283   DOI
5 Frojdo S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792: 83-92   DOI
6 Santoso T (2006) Prevention of cardiovascular disease in diabetes mellitus: by stressing the CARDS study. Acta Med Indones 38: 97-102
7 Roy Taylor (2012) Insulin resistance and type 2 diabetes. Diabetes 61: 778-779   DOI
8 Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signaling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7: 85-96   DOI
9 Shin MJ, Park MJ, Youn MS, Lee YS, Nam MS, Park IS, Jeong YH (2006) Effects of silk protein hydrolysates on blood glucose in C57BL/KsJ db/db mice. J Korean Soc Food Sci Nutr 35: 1166-1171   DOI
10 Choi H J, Kim SW (2006) Therapeutic roles of PPAR-${\gamma}$ agonists. J Korean Acad Fam Med 27: 599-606
11 Lee SH, Lee JK, Kim IH (2012) Trends and perspectives in the development of antidiabetic drugs for type 2 diabetes mellitus. Korean J Microbiol Biotechnol 40: 180-185   DOI
12 Kwon HS (2012) Mechanism and efficacy of new anti-diabetic medications. J Korean Diabetes 13: 167-171   DOI
13 Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356: 2457-2471   DOI
14 Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52: 2219-2230   DOI
15 Yeo JY, Kang YM, Cho SI, Jung MH (2011) Effects of a multi-herbal extract on type 2 diabetes. Chin Med 6: 10   DOI
16 Han KL, Choi JS, Lee JY, Song J, Joe MK, Jung MH, Hwang JK (2008) Therapeutic potential of peroxisome proliferators--activated receptoralpha/gamma dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes 57: 737-745   DOI
17 Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5: 150-159   DOI
18 Nasri H, Rafieian-Kopaei M (2014) Metformin: Current knowledge. J Res Med Sci 19: 658-664
19 Atta-Ur-Rahman, Zaman K (1989) Medicinal plants with hypoglycemic activity. J Ethnopharmacol 26: 1-55   DOI
20 Perseghin G, Lattuada G, Danna M, Sereni LP, Maffi P, De Cobelli F, Battezzati A, Secchi A, Del Maschio A, Luzi L (2003) Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 285: E1174-1181   DOI
21 Yoo BK (2015) Effect of Lespedeza bicolor water extract for the management of type 2 diabetes Mellitus. Korean J Community Pharm 1: 39-43
22 Nemoto T, Ohashi H (1993) Seedling morphology of Lespedeza (Leguminosae). J Plant Res 106: 121-128   DOI
23 Kim CK (1993) Compositions of fatty acid, free amino acid and total amino acid of Lespedeza$\times$chiisanensis T. LEE. J Korean Soc Food Sci Nutr 22: 586-591
24 Heo DY, Kim YM, Lee J, Park SH, Kim J, Park HM, Lee CH (2014) Desmodianone H and uncinanone B, potential tyrosinase inhibitors obtained from Lespedeza maximowiczii by using bioactivity-guided isolation. Biosci Biotechnol Biochem 78: 943-945   DOI
25 Kim Nk, Park HM, Lee J, Ku KM, Lee CH (2015) Seasonal Variations of Metabolome and Tyrosinase Inhibitory Activity of Lespedeza maximowiczii during Growth Periods. J Agric Food Chem 63: 8631-8639   DOI
26 Lee YS, Joo EY, Kim NW (2005) Analysis on the components in stem of the Lespedeza bicolor. J Korean Soc Food Sci Nutr 34: 1246-1250   DOI
27 Lee YS, Joo EY, Kim NW (2006) Polyphenol contents and physiological activity of the Lespedeza bicolor extracts. Korean J Food Preserv 13: 616-622
28 Tan L, Zhang XF, Yan BZ, Shi HM, Du LB, Zhang YZ, Wang LF, Tang YL, Liu Y (2007) A novel flavonoid from Lespedeza virgata (Thunb.) DC.: structural elucidation and antioxidative activity. Bioorg Med Chem Lett 17: 6311-6315   DOI
29 Mori-Hongo M, Yamaguchi H, Warashina T, Miyase T (2009) Melanin synthesis inhibitors from Lespedeza cyrtobotrya. J Nat Prod 72: 63-71   DOI
30 Kim SM, Jung YJ, Pan CH, Um BH (2010) Antioxidant activity of methanol extracts from the genus Lespedeza. J Korean Soc Food Sci Nutr 39: 769-775   DOI
31 Lee YS, Joo EY, Kim NW (2005) Antioxidant activity of extracts from the Lespedeza bicolor. Korean J Food Preserv 12: 75-79
32 Lee A, Kim BN, Zhoh CK, Shin GH (2006) Studies on the antioxidantive and antimicrobial effects of Lespedeza bicolor extracts. J Korean Soc of Esthe Cosmec 1: 109-120
33 Ryu IS, Lee SJ, Lee SW, Mun YJ, Woo WH, Kim YM, Lee JC, Lim KS (2007) Dermal bioactive properties of the ethanol extract from flowers of Lespedeza bicolor. J Korean Med Ophthalmol Otolaryngol Dermatol 20: 1-9
34 Baek SH, Kim JH, Kim DH, Lee CY, Kim JY, Chung DK, Lee CH (2008) Inhibitory effect of dalbergioidin isolated from the trunk of Lespedeza cyrtobotrya on melanin biosynthesis. J Microbiol Biotechnol 18: 874-879
35 Inoue G, Cheatham B, Emkey R, Kahn CR (1998) Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem 273: 11548-11555   DOI
36 Maya MH, Hiroyuki T, Takayuki K, Makoto K, Yu I, Toshio M (2009) Melanin synthesis inhibitors from Lespedeza floribunda. J Nat Prod 72: 194-203   DOI
37 Kwon DJ, Bae YS (2009) Flavonoids from the aerial parts of Lespedeza cuneata. Biochem Syst Ecol 37: 46-48   DOI
38 Kim MS, Sharma BR, Rhyu DY (2016). Beneficial effect of Lespedeza cuneata (G. Don) water extract on streptozotocin-induced type 1 diabetes and cytokine-induced beta-cell damage. Nat Prod Sci 22: 175-179   DOI
39 Sharma BR, Rhyu DY (2015). Lespedeza davurica (Lax.) Schindl. extract protects against cytokine-induced ${\beta}$-cell damage and streptozotocininduced diabetes. Biomed Res Int 2015: 169256   DOI
40 Rubin CS, Hirsch A, Fung C, Rosen OM (1978) Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem 253: 7570-7578   DOI
41 Ko BS, Kim HK, Park SM (2002) Natural products, organic chemistry: Insulin sensitizing and insulin-like effects of water extracts from Kalopanax pictus NAKAI in 3T3-L1 adipocyte. J Korean Soc Agric Chem Biotechnol 45: 42-46
42 Choi SS, Cha BY, Iida K, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT (2011) Artepillin C, as a PPARa ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biochem Pharmacol 81: 925-933   DOI