Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.7.758

Insulin-like Growth Factor-I Regulates the FAT/CD36 Expression in C2C12 Skeletal Muscle Cells  

Kim, Hye Jin (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Yoon, Hae Min (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Kim, Tae Young (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Lee, Won Jun (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Publication Information
Journal of Life Science / v.26, no.7, 2016 , pp. 758-763 More about this Journal
Abstract
Fatty acid transporters are key mediators of skeletal muscle lipid metabolism. Several protein groups have been implicated in cellular long-chain fatty acid uptake or oxidation, including fatty acid transporter proteins (FATPs), the plasma membrane fatty acid-binding protein (FABPpm), and the fatty acid translocase (FAT/CD36). FAT/CD36 is highly expressed in skeletal muscle and known to be regulated by various factors such as exercise and hormones. Insulin-like growth factor-I (IGF-I) is a well-known regulator of skeletal muscle cells. However, it has not been studied whether there is any interaction between IGF-I and FAT/CD36 in skeletal muscle cells. In this study, the effects of IGF-I treatment on FAT/CD36 induction were examined. Differentiated C2C12 cells were treated with 20 ng/ml of IGF-I at different time points. Treatment of C2C12 cells with IGF-I resulted in increased FAT/CD36 mRNA and protein expression. After 24 and 48 hr of IGF-I treatment, FAT/CD36 mRNA increased 89% and 24% respectively. The increase of both proteins returned to the control level after 72 hr of IGF-I treatment, suggesting that the FAT/CD36 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. These results suggest that IGF-I can regulate the expression of FAT/CD36 in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the FAT/CD36 gene in C2C12 skeletal muscle cells and has modulating effects on fatty acid uptake proteins as well as oxidative proteins.
Keywords
C2C12 myotube; FAT/CD36; fatty acids; fatty acid transporters; IGF-I;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abumrad, N., Coburn, C. and Ibrahimi, A. 1999. Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPpm. Biochem. Biophys. Acta. 1441, 4-13.
2 Berryman, D. E., Glad, C. A., List, E. O. and Johannsson, G. 2013. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat. Rev. Endocrinol. 9, 346-356.   DOI
3 Bonen, A., Campbell, S. E., Benton, C. R., Chabowski, A., Coort, S. L. M., Han, X., Koonen, D. P. Y., Glatz, J. F. C. and Luiken, J. J. F. P. 2004. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc. Nutr. Soc. 63, 245-249.   DOI
4 Bonen, A., Han, X. X., Habets, D. D., Febbraio, M., Galtz, J. J. and Luiken J. J. 2007. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am. J. Physiol. 292, E1740-E1749.
5 Bonen, A., Luiken, J. J., Liu, S., Dyck, D. J., Kiens, B., Kristiansen, S. and Turcotte, L. P. 1998. Palmitate transport and fatty acid transporters in red and white muscles. Am. J. Physiol. 275, E471-E478.
6 Bonen, A., Parolin, M. L., Steingerg, G. R., Calles-Escandon, J., Tandon, N. N., Glatz, J. F. C., Luiken, J. J. F. P., Heigenhauser, G. J. F. and Dyck, D. J. 2004. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 18, 1144-1146.
7 Brinkamann, J. F. F., Abumrad, N. A., Ibrahimi, A., Van Der Vusse, G. J. and Glatz, J. F. C. 2002. New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem. J. 367, 561-570.   DOI
8 Clarke, D. C., Miskovic, D., Han, X., Calles-Escandon, J., Glatz, J. F. C., Luiken, J. J. F. P., Heikkila, J. J. and Bonen, A. 2004. Overexpression of memebrane-associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiol. Genomics 17, 31-37.   DOI
9 Clemmons, D. R. 2004. The relative roles of growth hormone and IGF-1 in controlling insulin sensitivity. J. Clin. Invest. 113, 25-27.   DOI
10 Coburn, C. T., Knapp, F. F., Febbraio, M., Beets, A. L., Silverstein, R. L. and Abumrad, N. A. 2000. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275, 32523-32529.   DOI
11 Coen, P. M. and Goodpaster, B. H. 2012. Role of intramyocelluar lipids in human health. Trends. Endocrinol. Metab. 23, 391-398.
12 Falholt, K., Jensen, I., Lindkaer Jensen, S., Mortensen, H., Volund, A., Heding, L. G., Noerskov Petersen, P. and Falholt, W. 1998. Carbohydrate and lipid metabolism of skeletal muscle in type 2 diabetic patients. Diabet. Med. 5, 27-31.
13 Febbraio, M., Hajjar, D. P. and Silverstein, R. L. 2001. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785-791.   DOI
14 Frystyk, J. Ledet, T. Moller, N. Flyvbjerg, A. and Orskov, H. 2002. Cardiovascular disease and insulin-like factor-Ⅰ. Circulation 106, 893-895.   DOI
15 Keizer, H. A., Schaart, G., Tandon, N. N., Glatz, J. F. C. and Luiken, J. J. F. P. 2004. Subcellular immunolocalisation of fatty acid translocase (FAT)/CD36 in human type-1 and type-2 skeletal muscle fibres. Histochem. Cell. Biol. 121, 101-107.   DOI
16 Glatz, J. F. C., Luiken, J. J. F. P. and Bonen, A. 2001. Involvement of membrane-associated proteins in the acute regulation of cellular fatty acid uptake. J. Mol. Neurosci. 16,123-132.   DOI
17 Glatz, J. F. C., Luiken, J. J. F. P. and Bonen, A. 2010. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic, disease. Physiol. Rev. 90, 367-417.   DOI
18 Jordy, A. B. and Kiens, B. 2014. Regulation of exercise-induced lipid metabolism in skeletal muscle. Exp. Physiol. 99, 1586-1592.   DOI
19 Le Roith, D. 1997. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N. Engl. J. Med. 336, 633-640.   DOI
20 Luiken, J. J., Coort, S. L., Koonen, D. P., van der Horst, D. J., Bonen, A., Zorzano, A. and Glatz, J. F. C. 2004. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers. Arch. 448, 1-15.   DOI
21 Machida, S. and Booth, F. W. 2004. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc. Nutr. Soc. 63, 337-340.   DOI
22 Moses, A. C., Young, S. C., Morrow, S. A., O′Brien, M. and Clemmons, D. R. 1996. Recombinant human insulin-like growth factor-I increases insulin sensitivity and improves glycemic control in type Ⅱ diabetes. Diabetes 45, 91-100.   DOI
23 Phillips, S. M. 2007. Resistance exercise: good for more than just grandma and grandpa′s muscles. Appl. Physiol. Nutr. Metab. 32, 1198-1205.   DOI
24 Van Nieuwenhoven, F. A., Verstijnen, C. P., Abumrad, N. A., Willemsen, P. H., Van Eys, G. J., Van der Vusse, G. J.and Glatz, J. F. C. 1995. Putative membrane fatty acid translocase and cytoplasmic fatty acid binding protein are co-expressed in rat heart and skeletal muscles. Biochem. Biophys. Res. Commun. 207, 747-752.   DOI
25 Schneider, D. J. and Sobel, B. E. 1991. Augmentation of synthesis of plasminogen activator inhibitor type 1 by insulin and insulin-like growth factor type Ⅰ: implications for vascular disease in hyperinsulinemic states. Proc. Natl. Acad. Sci. USA 88, 9959-9963.   DOI
26 Schultz, E. and McCormick, K. M. 1994. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol. 123, 213-257.
27 van Loon, L. J., Koopman, R., Stegen, J. H. C. H., Wagenmakers, A. J. M., Keizer, H. A. and Saris, W. H. M. 2003. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fated state. J. Physiol. 553, 611-625.   DOI