• Title/Summary/Keyword: Lipid peroxidation

Search Result 2,038, Processing Time 0.026 seconds

Anti-Oxidative and Inhibitory Effect of Saussurea involucrata on MMP-1 in UVA-irradiated Human Dermal Fibroblast (설련의 항산화능와 사람 섬유아세포에서 UVA에 의한 MMP-1발현 저해효과)

  • Sim, Gwan-Sub;Kim, Jin-Hwa;Na, Young;Lee, Dong-Hwan;Lee, Bum-Chun;Zhang, Yong-He;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.329-335
    • /
    • 2005
  • In order to investigate the effects of Saussurea involucrata on (relationship between) aging (and Saussurea involucrata), we examined the activities of antioxidation, in vitro MMP inhibition and UVA-induced MMP-1 expression in human dermal fibroblasts. S. involucrata showed scavenging activities radicals and reactive oxygen species (ROS) with the $IC_{50}$ values of $3.89{\mu}g/mL$ against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and $67.29{\mu}g/mL$ against superoxide radicals in the xanthine/xanthine oxidase system, respectively. At the concentration of $1000{\mu}g/mL$, S. involucrata showed 93.27% inhibition on lipid peroxidation of linoleic acid. S. involucrata inhibited the activities of MMP-1 in a does-dependent manner and the $IC_{50}$ value calculated from semi-log plots was $97.18{\mu}g/mL$. Also, UVA induced MMP expression in human dermal fibroblasts was reduced 42.86% by treatment with S. involucrata, and MMP-1 mRNA expression was reduced in a dose-dependent manner. Therefore S. involucrata was able to significantly inhibit MMP expression in protein and mRNA level. All these results suggested that S. involucrata might act as an anti-aging agent by antioxidation and reducing UVA-induced MMP-1 production.

Effects of Bambusae Caulis in Taeniam Extract on the UVB-induced Cell Death, Oxidative Stress and Matrix Metalloproteinase 1 Expression in Keratinocytes (각질세포에서 자외선B가 유도한 세포 사멸, 산화적 스트레스 및 matrix metalloproteinase 1 발현에 대한 죽여추출물의 영향)

  • Seok, Jin Kyung;Kwak, Jun Yup;Seo, Hyeong Ho;Suh, Hwa Jin;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • Ultraviolet radiation (UV) is a major cause of skin photoaging, and effective UV protecting agents are needed for the skin health and beauty. This study was undertaken to examine the effects of Bambusae caulis in Taeniam extract (BCTE) on UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 (MMP1) expression in cell-based assays. HaCaT human keratinocytes were exposed to UVB in the presence of BCTE at different concentrations and resulting changes in cell viability and biochemical events were determined. The results showed that BCTE enhanced the viabilities of UVB-exposed cells, and attenuated apoptotic events such as cleavage of procaspase 3 to its active form, and the increase of Bax to Bcl-2 ratios. BCTE also attenuated the reactive oxygen generation and lipid peroxidation in cells exposed to UVB. Additionally, it attenuated the expression of matrix metalloproteinase 1 and the phosphorylation of c-Jun N-terminal kinase stimulated by UVB. Conclusively, the present study demonstrated that BCTE pro tected skin cells from the UVB-induced cell death, oxidative stress and MMP1 expression, suggesting its potential use as a cosmetic ingredient mitigating some features of the skin photoaging.

Effects of Ethanol Extract of Prunus mume on the Antioxidative System and Lipid Peroxidation on Ethanol-Induced Hepatotoxicity in Rat Liver (매실 추출물이 알코올 투여 흰쥐의 항산화계 및 지질과산화에 미치는 영향)

  • 이정현;나명순;이명렬
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.71-78
    • /
    • 2004
  • To investigate the antioxidative effects of Prunus mume ethanol extract on the ethanol-induced hepatotoxicity in rat liver, Sprague-Dawley rats weighing 120∼160 g were divided into 5 groups; normal group(NOR), Prunus mume ethanol extract 200mg/kg treated group(PME), ethanol(10 mL/kg, 35%) treated group(ETH), Prunus mume ethanol extract 200 mg/kg and ethanol treated group (PML) and Prunus mume ethanol extract 400 mg/kg, and ethanol treated group(PMF), respectively. The antioxidative activity in vitro was reduced in order of EtOAC>n-hexane>water> chloroform fraction. The growth rate and feed efficiency ratio decreased by ethanol administration were gradually increased to the adjacent level of NOR by administering Prunus mume ethanol extract. It was observed that activities of catalase, superoxide dismutase(SOD), xanthine oxidase and glutathione peroxidase(GSH-Px) of liver and alanine aminotransferase(ALT) and asparate aminotransferase(AST) of serum were elevated by ethanol administration. Besides, Prunus mume ethanol extract markedly decreased elevated activites of catalase, GSH-Px, ALT and AST, except in activites of SOD and xanthine oxidase compared to ETH. Also, the depleted content of GSH by ethanol was increased similar to NOR level by administering Prunus mume ethanol extract. These results suggested that Prunus mume ethanol extract has a possible protective effect on the ethanol-induced hepatotoxicity in rat liver.

Nutritional Components and Antioxidative Activities of Jujube (Zizyphus jujuba) Fruit and Leaf (대추 열매와 잎의 영양성분 및 항산화 활성)

  • Kim, Il-Hun;Jeong, Chang-Ho;Park, Soo-Jeong;Shim, Ki-Hwan
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.341-348
    • /
    • 2011
  • The nutritional components and antioxidative activities of jujube fruit and leaf were investigated and analyzed to provide basic data for functional food materialization and processing. The nitrogen-free extract contents of the fruit and leaf were 71.92% and 41.51%, respectively. The mineral components of the fruit and leaf were rich in Ca (72.14 and 3,252.09 mg/100 g), K (899.82 and 1,708.12 mg/100 g), and P (172.11 and 286.28 mg/100 g), respectively. The major free sugars of the fruit were glucose (13.01 %) and fructose (7.35%); and of the leaf, sucrose (3.94%) and fructose (0.75%). The ascorbic acid contents were higher in fruit (135.73 mg/100 g) than in the leaf (100.43 mg/100 g). The analysis of the component amino acid showed a relatively high ratio of glutamic acid, aspartic acid, proline, and essential amino acids of leucine, but a low methionine and cystine content. The ABTS and FRAP assays indicated that the butanol fraction of the leaf was a more potent radical scavenger and reducing agent than the other five solvent fractions. The butanol fraction of the leaf also presented inhibitory effects against lipid peroxidation in a dose-dependent manner. Therefore, this study verified that the butanol fraction of the leaf has strong antioxidative activities that are correlated with its high level of phenolics, particularly rutin and quercitrin. These phenolics of jujube leaf can be utilized as effective and safe functional food substances, i.e., natural antioxidants.

Antioxidant and Neuronal Cell Protective Effects of an Extract of Houttuynia cordata Thunb (a Culinary Herb) (어성초 추출물의 항산화 및 신경세포 보호효과)

  • Jeong, Hee-Rok;Kwak, Ji-Hyun;Kim, Ji-Hye;Choi, Gwi-Nam;Jeong, Chang-Ho;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.720-726
    • /
    • 2010
  • The in vitro antioxidant activities and neuronal cell protective effects of 60% (w/v) methanolic extract from Houttuynia cordata were investigated. The contents of total phenolics and quercitrin in the extract were 17.71 mg/g and 75.80 ${\mu}g$/g, respectively. DPPH and ABTS radical-scavenging activities were 87.79% and 99.27%, respectively, when the extract was tested at 5 mg/ml. The FRAP (ferric reducing/antioxidant power) assay showed a dose-dependent increse in activity. In a cell viability assay using MTT, the extract protected against $H_2O_2$-induced neurotoxicity. Lactate dehydrogenase (LDH) leakage was also inhibited by the extract, as was lipid peroxidation as shown using the mouse brain homogenate test. These data indicate that a 60% (w/v) methanolic extract of Houttuynia cordata has in vitro antioxidant activities, and ingestion there of may reduce the risk of developing neurodegenerative disorders.

Comparison of the content of bioactive substances and antioxidative activity between conventionally and organically cultivated brown rice (Oryza sativa L.) (관행 및 유기재배 현미의 생리활성 성분의 함량 및 항산화활성 비교)

  • Kim, Gee An;Cho, Jeong-Yong;Lee, You Seok;Lee, Hyoung Jae;Jeong, Hang Yeon;Lee, Yu Geon;Moon, Jae-Hak
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.334-342
    • /
    • 2017
  • The content of bioactive substances and antioxidative activity in conventionally grown brown rice (CGBR) and organically grown brown rice (OGBR) were compared. Minerals (mg/100 g) such as magnesium (OGBR, $168.59{\pm}2.62$; CGBR, $121.43{\pm}2.22$), copper (OGBR, $0.50{\pm}0.06$; CGBR, $0.41{\pm}0.05$), and manganese (OGBR, $4.70{\pm}0.04$; CGBR, $2.49{\pm}0.02$) were higher in OGBR than in CGBR (p<0.05). In addition, levels of (${\mu}g/100g$) vitamins B2 (OGBR, $27.22{\pm}2.56$; CGBR, $22.12{\pm}2.24$) and B6 (OGBR, $46.32{\pm}2.66$; CGBR, $39.91{\pm}3.32$) were higher in OGBR than in CGBR (p<0.05). The contents (mg/100 g) of ${\beta}$-sitosterol (OGBR, $27.40{\pm}2.79$; CGBR, $24.75{\pm}1.06$), total phenolic (OGBR, $6.72{\pm}0.02$; CGBR, $6.64{\pm}0.02$), and ferulic acid (OGBR, $1.75{\pm}0.45$; CGBR, $1.11{\pm}0.14$) as well as the antioxidative activity (OGBR, $53.09{\pm}1.90%$; CGBR, $48.29{\pm}3.38%$) evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay were higher in OGBR than in CGBR, although no significant differences between samples were observed. In comparison to the control group, brown rice samples significantly inhibited cholesteryl ester hydroperoxide formation in rat plasma subjected to copper ion-induced lipid peroxidation. The inhibitory effect of OGBR was higher than that of CGBR. These results indicate that OGBR showed higher levels of bioactive substances and enhanced antioxidative activity than CGBR, although the differences were not statistically significant.

Cognitive improvement effects of Momordica charantia in amyloid beta-induced Alzheimer's disease mouse model (여주의 amyloid beta 유도 알츠하이머질환 동물 모델에서 인지능력 개선 효과)

  • Sin, Seung Mi;Kim, Ji Hyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.299-307
    • /
    • 2021
  • Accumulation of amyloid beta (Aβ) and oxidative stress are the most common reason of Alzheimer's disease (AD). In the present study, we investigated the cognitive improvement effects of butanol (BuOH) fraction from Momordica charantia in Aβ25-35-induced AD mouse model. To develop an AD mouse model, mice were received injection of Aβ25-35, and then orally administered BuOH fraction from M. charantia at doses of 100 and 200 mg/kg/day during 14 days. In the T-maze and novel object recognition test, administration of BuOH fraction from M. charantia L. at doses of 100 and 200 mg/kg/day improved spatial ability and novel object recognition by increased explorations of novel route and new object. In addition, BuOH fraction of M. charantia-administered groups improved learning and memory abilities by decreased time to reach hidden platform in Morris water maze test. Oral administration of BuOH fraction from M. charantia significantly inhibited lipid peroxidation and nitric oxide levels in the brain, liver, and kidney compared with Aβ25-35-induced control group. These results indicated that BuOH fraction of M. charantia improved Aβ25-35-induced cognitive impairment by attenuating oxidative stress. Therefore, M. charantia could be useful for protection from Aβ25-35-induced cognitive impairment.

Antioxidant potential of Sargassum horneri extracts in the liver of mice with PM-induced asthma (미세먼지 흡입 과민성 천식 마우스의 간 조직에서 괭생이모자반 추출물의 항산화 효능)

  • Kim, Hyo Jin;Kim, Areum;Herath, Kalahe Hewage Iresha Nadeeka Madushani;Mihindukulasooriya, Suyama Prasansali;Jeon, You-Jin;Kim, Hyun Jung;Jee, Youngheun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.535-543
    • /
    • 2021
  • Particulate matter (PM) causes oxidative stress and can rapidly diffuse from the lung to the blood and accumulate in the liver when inhaled. Natural antioxidants can be used to protect against oxidative stress caused by PM. Sargassum horneri, a brown seaweed, possesses antioxidative activity and is a good source of functional foods. Therefore, this study investigated the antioxidant potential of S. horneri extract (SHE) in the livers of PM-induced asthmatic mice. PM inhalation triggered lipid peroxidation and oxidative stress, and SHE treatment attenuated malondialdehyde in the liver of mice with PM-induced asthma. Furthermore, SHE mitigated the increase in catalase activity. Importantly, SHE reduced the activity of 8-oxoguanine glycosylase (OGG1), a DNA repair enzyme. These results suggest that SHE has antioxidant potential for moderating PM-induced oxidative stress and DNA damage in the liver of asthmatic mice.

Suppression of reactive oxygen species generation as a part of antioxidative effect of plant extracts (식물추출물 항산화효능 기전의 일부로서의 활성산소 발생 억제 효과)

  • Song, Seon Beom;Chung, Gu June;Jung, Hee Jin;Jang, Jung Yoon;Chung, Hae Young;Kim, Nam Deuk;Lee, Ji-Hyeon;Min, Kyungjin;Park, Sun Yeong;Kwak, Chung Shil;Hwang, Eun Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.706-714
    • /
    • 2021
  • Chemical scavenging of reactive oxygen species (ROS) is considered a major mechanism of antioxidant effects, but preventing ROS generation can be more efficient in attenuating oxidative damage. In this study, the extracts of plants, Solanum lycopersicum, Ailanthus altissima, Equisetum arvense, and Oenothera biennis, were tested to determine whether their antioxidative effects are driven by the prevention of superoxide generation from mitochondria, a major ROS generator. While all the extracts efficiently attenuated the elevation of ROS levels in human fibroblasts and inflammation-induced mice, those of S. lycopersicum, A. altissima, and O. laciniata only suppressed mitochondrial ROS generation and reduced levels of lipofuscin and lipid peroxidation. Furthermore, the extracts of A. altissima and O. laciniata extended the lifespan of fruit flies. Our results suggest that plant extracts with anti-oxidative effects differ in their ability to prevent ROS generation, which may be associated with the attenuation of oxidative damage in cells and animal tissues.

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo;Silva, Joao P.;Ferreirinha, Pedro;Leitao, Alexandre F.;Andrade, Fabia K.;da Costa, Rui M. Gil;Cristelo, Cecilia;Rosa, Morsyleide F.;Vilanova, Manuel;Gama, F. Miguel
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.