DOI QR코드

DOI QR Code

Suppression of reactive oxygen species generation as a part of antioxidative effect of plant extracts

식물추출물 항산화효능 기전의 일부로서의 활성산소 발생 억제 효과

  • 송선범 (서울시립대학교 생명과학과) ;
  • 정구준 (서울시립대학교 생명과학과) ;
  • 정희진 (부산대학교 약학대학) ;
  • 장정윤 (부산대학교 약학대학) ;
  • 정해영 (부산대학교 약학대학) ;
  • 김남득 (부산대학교 약학대학) ;
  • 이지현 (인하대학교 생명과학과) ;
  • 민경진 (인하대학교 생명과학과) ;
  • 박순영 (다인내추럴) ;
  • 곽충실 (서울대학교 의과대학 노화고령사회연구소) ;
  • 황은성 (서울시립대학교 생명과학과)
  • Received : 2021.08.02
  • Accepted : 2021.10.20
  • Published : 2021.12.31

Abstract

Chemical scavenging of reactive oxygen species (ROS) is considered a major mechanism of antioxidant effects, but preventing ROS generation can be more efficient in attenuating oxidative damage. In this study, the extracts of plants, Solanum lycopersicum, Ailanthus altissima, Equisetum arvense, and Oenothera biennis, were tested to determine whether their antioxidative effects are driven by the prevention of superoxide generation from mitochondria, a major ROS generator. While all the extracts efficiently attenuated the elevation of ROS levels in human fibroblasts and inflammation-induced mice, those of S. lycopersicum, A. altissima, and O. laciniata only suppressed mitochondrial ROS generation and reduced levels of lipofuscin and lipid peroxidation. Furthermore, the extracts of A. altissima and O. laciniata extended the lifespan of fruit flies. Our results suggest that plant extracts with anti-oxidative effects differ in their ability to prevent ROS generation, which may be associated with the attenuation of oxidative damage in cells and animal tissues.

세포 내에서의 활성산소(ROS) 생성을 억제하는 일은 항산화제의 작동방식으로 기존에 알려진 ROS의 화학적 소거보다 조직의 산화적 손상을 줄이는 방법으로서 효과가 뛰어날 것으로 기대되지만, 이러한 전략은 지금까지의 연구들에서 거의 검토되지 않고 있다. 본 연구에서는 항산화 효능이 알려진 식물시료들이 실제로 세포에서 ROS 생성을 제어하여 항산화 효과를 발휘하는지를 쇠뜨기, 가죽나무잎, 달맞이순, 그리고 토마토의 에탄올 추출물을 가지고 조사하였다. 이 네 가지 식물 시료들은 모두 비슷하게 세포내 ROS의 수준을 감소시켰다. 그러나, 가죽나무잎, 달맞이순, 그리고 토마토 시료들만이 미토콘드리아 질을 개선하여 미토콘드리아로부터의 ROS 생성을 감소시켰는데, 이들은 또한 세포와 조직내 lipofuscin과 malondialdehyde의 축적을 줄여서 뚜렷한 산화적 손상을 억제하는 효과를 보였다. 이들은 나아가서 초파리의 수명을 연장시키는 효과도 보였다. 미토콘드리아 질 향상 효과가 거의 없었던 쇠뜨기 시료는 산화적 손상물과 초파리 수명에 거의 영향을 미치지 못하였다. 이러한 결과는 식물 시료들의 항산화 효과가 ROS의 화학적 소거와 미토콘드리아 질의 향상을 통해 발현될 수 있는데, 후자의 효과가 실제로 체내에서 산화적 손상을 억제하는데 중요하게 작용할 가능성을 시사해 준다. 향후, 식물시료들의 항산화 효능에 대해서 이러한 ROS 발생억제 기전을 대상으로 조사하는 일은 그 유용성을 판단하는데 있어서 큰 도움이 될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부와 한국산업기술진흥원이 지원하는 광역협력권산업육성사업으로 수행된 연구결과입니다.

References

  1. Ali, S.F., LeBel, C.P., Bondy, S.C. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology. 13: 637-648 (1992)
  2. Armstead W. Cyclooxygenase-2-dependent superoxide generation contributes to age-dependent impairment of G protein-mediated cerebrovasodilation. Anesthesiology. 98: 1378-1383 (2003) https://doi.org/10.1097/00000542-200306000-00012
  3. Balaban RS, Nemoto S, Finkel T. Mitochondria, Oxidants, and Aging Cell. 120: 483-495 (2005)
  4. Beckman JS, Crow JP. Pathological Implications of Nitric Oxide, Superoxide and Peroxynitrite Formation. Biochem. Soc. T. 21: 330-334 (1993) https://doi.org/10.1042/bst0210330
  5. Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J. Pathol. 221: 117-124 (2010) https://doi.org/10.1002/path.2694
  6. Borra MR, Smith BC, Denu JM. Mechanism of Human SIRT1 Activation by Resveratrol. J. Biol. Chem. 280: 17187-17195 (2005) https://doi.org/10.1074/jbc.M501250200
  7. Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Bio. Med. 100: 14-31 (2016) https://doi.org/10.1016/j.freeradbiomed.2016.04.001
  8. Chung HY, Kim DH, Lee EK, Chung KW, et al. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis. 10: 367-382 (2019) https://doi.org/10.14336/AD.2018.0324
  9. Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 1: 131-140 (2005) https://doi.org/10.4161/auto.1.3.2017
  10. Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and health span. Longev. Healthspan. 3:6. Doi: 10.1186/2046-2395-3-6. eCollection (2014)
  11. Foti MC. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59: 1673-1685 (2007) https://doi.org/10.1211/jpp.59.12.0010
  12. Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol. Neurodegener. 15: 20-32 (2020) https://doi.org/10.1186/s13024-020-00367-7
  13. Gordon MH. The mechanism of antioxidant action in vivo. Food Antioxidants. Springer, Dordrecht. University of Reading. UK. pp. 1-18 (1990)
  14. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298-300 (1956) https://doi.org/10.1093/geronj/11.3.298
  15. Haigis MC, Yankner BA. The Aging Stress Response. Mol. Cell. 40: 333-344 (2010) https://doi.org/10.1016/j.molcel.2010.10.002
  16. Hall JA, Dominy JE, Lee YJ, Puigserver P. The sirtuin family's role in aging and age-associated pathologies. J. Clin. Invest. 123: 973 (2013) https://doi.org/10.1172/JCI64094
  17. Hwang ES, Song SB. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell. Mol. Life Sci. 74: 3347-3362 (2017) https://doi.org/10.1007/s00018-017-2527-8
  18. Jang SY, Kang HT, Hwang ES. Nicotinamide-induced Mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 Protein activation. J. Biol. Chem. 287: 19304-19314 (2012) https://doi.org/10.1074/jbc.M112.363747
  19. Jiang LN, Liu YB, Li BH. Lycopene exerts anti-inflammatory effect to inhibit prostate cancer progression. Asian J. Androl. 21: 80-85 (2019) https://doi.org/10.4103/aja.aja_70_18
  20. Jin M, Bae KH, Chang HW, Son JK. Anti-inflammatory Compounds from the Leaves of Ailanthus altissima. Biomol. Ther. 17: 86-91 (2009) https://doi.org/10.4062/biomolther.2009.17.1.86
  21. Jin SM, Youle R. PINK1- And Parkin-mediated Mitophagy at a Glance. J. Cell Sci. 125: 795-799 (2012) https://doi.org/10.1242/jcs.093849
  22. Jung KJ, Lee EK, Kim SJ, Song CW, Maruyama N, Ishigami A, Kim ND, Im DS, Yu BP, Chung HY. Anti-inflammatory activity of SMP30 modulates NF-κB through protein tyrosine kinase/phosphatase balance. J. Mol. Med. 93: 343-356 (2015) https://doi.org/10.1007/s00109-014-1219-1
  23. Kang HT, Hwang ES. Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell. 8: 426-438 (2009) https://doi.org/10.1111/j.1474-9726.2009.00487.x
  24. Kang HT, Lee HI, Hwang ES. Nicotinamide extends replicative lifespan of human cells. Aging Cell. 5: 423-436 (2006) https://doi.org/10.1111/j.1474-9726.2006.00234.x
  25. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the Antioxidant Activity of Some Medicinal Plants. Kor. J. Food Sci. Tech. 36: 333 (2004)
  26. Kong MR, Lee YS. Anti-oxidative and Anti-aging Properties of Hot Water Extracts from Fertile and Sterile E. arvense Stems. J. Invest. Cosmetology. 11: 315-324 (2015) https://doi.org/10.15810/jic.2015.11.4.005
  27. Korolchuk V, miwa S, Carroll B, von zglinicki T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EbioMedicine 21: 7-13 (2017) https://doi.org/10.1016/j.ebiom.2017.03.020
  28. Kwak JY, Ham HJ, Kim CM, Hwang ES. Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 38: 229-235 (2015) https://doi.org/10.14348/MOLCELLS.2015.2253
  29. Kwak CS, Lee JH. In vitro Antioxidant and Anti-inflammatory Effects of Ethanol Extracts from Sprout of Evening Primrose (Oenothera laciniata) and Gooseberry (Actinidia argute). J Korean Soc. Food Sci. Nutr. 43: 207-215 (2014) https://doi.org/10.3746/JKFN.2014.43.2.207
  30. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct. Target Ther. 2: 17023 (2017) https://doi.org/10.1038/sigtrans.2017.23
  31. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 9: 477 (2018) https://doi.org/10.3389/fphys.2018.00477
  32. Meo SD, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell Longev. 1245049 (2016) https://doi.org/10.1155/2016/1245049
  33. Moore K, Roberts LJ. Measurement of Lipid Peroxidation. Free Radical Res. 28: 659-671 (1998) https://doi.org/10.3109/10715769809065821
  34. Mori T, Ishigami A, Seyama K, Onai R, Kubo S, Shimizu K, Maruyama N, Fukuchi Y. Senescence Marker protein-30 Knockout Mouse as a Novel Murine Model of Senile Lung. Pathol. Int. 54: 167-173 (2004) https://doi.org/10.1111/j.1440-1827.2003.01603.x
  35. Namiki M. Antioxidants/antimutagens in food. Crit. Rev. Food Sci. Nutr. 9: 273-300 (1990) https://doi.org/10.1080/10408399009527528
  36. Ohkawa H, Ohishi N, Yagi N. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  37. Perveen R, Suleria HAR, Anjum FM, et al. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims-A Comprehensive Review. Critic. Rev. Food Sci. Nutr. 55: 919-929 (2015) https://doi.org/10.1080/10408398.2012.657809
  38. Rudeman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. AMPK and SIRT11: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 298: E751-760 (2010) https://doi.org/10.1152/ajpendo.00745.2009
  39. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11: 230-241 (2012) https://doi.org/10.1016/j.arr.2011.12.005
  40. Santos-Sanchez NF, Salas-Coronado R, Villanueva-Canongo C, Hernandez-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. In: Antioxidants. IntechOpen. (2019)
  41. Scialo F, Fernandez-Ayala DJ, Sanz A. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front. Physiol. 8: 428 (2017) https://doi.org/10.3389/fphys.2017.00428
  42. Sohal RS, Brunk UT. Lipofuscin as an indicator of oxidative stress and aging. Adv. Exp. Med. Biol. 266:17-26 (1989)
  43. Song YS, Lee BY, Hwang ES. Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech. Ageing Dev. 126: 580-590 (2005) https://doi.org/10.1016/j.mad.2004.11.008
  44. Song SB, Jang SY, Kang HT, Wei B, Jeoun UW, Yoon GS, Hwang ES. Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy. Mol. Cells. 40: 503-514 (2017)
  45. Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int. J. Mol. Sci. 18: 1865 (2017) https://doi.org/10.3390/ijms18091865