• Title/Summary/Keyword: Liouville equation

Search Result 46, Processing Time 0.024 seconds

THREE SOLUTIONS FOR A SECOND-ORDER STURM-LIOUVILLE EQUATION WITH IMPULSIVE EFFECTS

  • HAGHSHENAS, HADI;AFROUZI, GHASEM A.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.407-414
    • /
    • 2020
  • In this article, a second-order Sturm-Liouville problem with impulsive effects and involving the one-dimensional p-Laplacian is considered. The existence of at least three weak solutions via variational methods and critical point theory is obtained.

DETERMINATION OF THE FLEXURAL RIGIDITY OF A BEAM FROM LIMITED BOUNDARY MEASUREMENTS

  • LESNIC DANIEL
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.17-34
    • /
    • 2006
  • Inverse coefficient identification problems associated with the fourth-order Sturm-Liouville operator in the steady state Euler-Bernoulli beam equation are investigated. Unlike previous studies in which spectral data are used as additional information, in this paper only boundary information is used, hence non-destructive tests can be employed in practical applications.

GRADIENT ESTIMATES AND HARNACK INEQUALITES OF NONLINEAR HEAT EQUATIONS FOR THE V -LAPLACIAN

  • Dung, Ha Tuan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1285-1303
    • /
    • 2018
  • This note is motivated by gradient estimates of Li-Yau, Hamilton, and Souplet-Zhang for heat equations. In this paper, our aim is to investigate Yamabe equations and a non linear heat equation arising from gradient Ricci soliton. We will apply Bochner technique and maximal principle to derive gradient estimates of the general non-linear heat equation on Riemannian manifolds. As their consequence, we give several applications to study heat equation and Yamabe equation such as Harnack type inequalities, gradient estimates, Liouville type results.

SINGULAR PERTURBATIONS AND SMALL DELAYS THROUGH LIOUVILLE'S GREEN TRANSFORMATION

  • DANY JOY;DINESH KUMAR S
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.5
    • /
    • pp.1211-1225
    • /
    • 2024
  • In this paper, we introduce a numerical method for solving singularly perturbed delay differential equation using Liouville - Green transformation. As an initial step, we transformed the statement equation into a singular perturbation problem with boundary conditions and then we used Liouville - Green transformation to solve it. Almost second-order accuracy is achieved with the scheme derived. The algorithm's performance is assessed through the examination of multiple test scenarios that involve different perturbation settings and delay parameters. The results of the proposed method are compared with those of other numerical techniques already available. The numerical scheme is described together with error estimates and a convergence rate.

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.

ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH A NONLINEAR SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

  • Mamedov, Khanlar R.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1243-1254
    • /
    • 2009
  • The inverse scattering problem is investigated for some second order differential equation with a nonlinear spectral parameter in the boundary condition on the half line [0, $\infty$). In the present paper the coefficient of spectral parameter is not a pure imaginary number and the boundary value problem is not selfadjoint. We define the scattering data of the problem, derive the main integral equation and show that the potential is uniquely recovered.

A Theoretical Representation of Relaxation Processes in Complex Spin System Using Liouville Space Method

  • Kyunglae Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • For the study of relaxation processes in complex spin system, a general master equation, which can be used to simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum mechanics. The state of a nonequilibrium spin system in magnetic field is described by a density vector in Liouville space and the time evolution of the system is followed by the application of a linear master operator to the density vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interaction or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is possible to represent the final nonstationary spectrum using a frequency dependent spectral vector and intensity determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSIFORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

SOME SPECTRAL AND SCATTERING PROPERTIES OF GENERALIZED EIGENPARAMETER DEPENDENT DISCRETE TRANSMISSION STURM-LIOUVILLE EQUATION

  • Guher Gulcehre Ozbey;Guler Basak Oznur;Yelda Aygar ;Turhan Koprubasi
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.457-470
    • /
    • 2023
  • In this study, we set a boundary value problem (BVP) consisting of a discrete Sturm-Liouville equation with transmission condition and boundary conditions depending on generalized eigenvalue parameter. Discussing the Jost and scattering solutions of this BVP, we present scattering function and find some properties of this function. Furthermore, we obtain resolvent operator, continuous and discrete spectrum of this problem and we give an valuable asymptotic equation to get the properties of eigenvalues. Finally, we give an example to compare our results with other studies.

Reassessment of the Mild Slope Equations (완경사 파랑식들의 재평가)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.521-532
    • /
    • 2007
  • In the derivation of mild slope equation, a Galerkin method is used to rigorously form the Sturm-Liouville problem of depth dependent functions. By use of the canonical transformation to the dependent variable of the equation a reduced Helmholtz equation is obtained which exclusively consists of terms proportional to wave number, bottom slope and bottom curvature. Through numerical studies the behavior of terms is shown to play an important role in wave transformations over variable depth and it is proved that their relative magnitudes limit applicability of the mild slope equation(MSE) against the modified mild slope equation(MMSE).