1 |
H. T. Dung, Gradient estimates and Harnack inequalities for Yamabe-type parabolic equations on Riemannian manifolds, Differential Geom. Appl. 60 (2018), 39-48.
DOI
|
2 |
N. T. Dung and N. N. Khanh, Gradient estimates of Hamilton-Souplet-Zhang type for a general heat equation on Riemannian manifolds, Arch. Math. (Basel) 105 (2015), no. 5, 479-490.
DOI
|
3 |
R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113-126.
|
4 |
P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201.
DOI
|
5 |
Y. Li, Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature, Nonlinear Anal. 113 (2015), 1-32.
|
6 |
Q. Ruan, Elliptic-type gradient estimate for Schrodinger equations on noncompact manifolds, Bull. Lond. Math. Soc. 39 (2007), no. 6, 982-988.
DOI
|
7 |
L. Ma, Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal. 241 (2006), no. 1, 374-382.
DOI
|
8 |
P. Mastrolia, M. Rigoli, and A. G. Setti, Yamabe-type equations on complete, noncompact manifolds, Progress in Mathematics, 302, Birkhauser/Springer Basel AG, Basel, 2012.
|
9 |
H. Qiu, The heat flow of V -harmonic maps from complete manifolds into regular balls, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2271-2280.
|
10 |
P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), no. 6, 1045-1053.
DOI
|
11 |
J.-Y. Wu, Elliptic gradient estimates for a weighted heat equation and applications, Math. Z. 280 (2015), no. 1-2, 451-468.
DOI
|
12 |
M.-F. Bidaut-Veron and L. Veron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), no. 3, 489-539.
|
13 |
L. Brandolini, M. Rigoli, and A. G. Setti, Positive solutions of Yamabe type equations on complete manifolds and applications, J. Funct. Anal. 160 (1998), no. 1, 176-222.
DOI
|
14 |
E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56.
|
15 |
Q. Chen, J. Jost, and H. Qiu, Existence and Liouville theorems for V-harmonic maps from complete manifolds, Ann. Global Anal. Geom. 42 (2012), no. 4, 565-584.
DOI
|
16 |
Q. Chen and H. Qiu, Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv. Math. 294 (2016), 517-531.
|
17 |
Q. Chen, J. Jost, and H. Qiu, Omori-Yau maximum principles, V-harmonic maps and their geometric applications, Ann. Global Anal. Geom. 46 (2014), no. 3, 259-279.
DOI
|
18 |
Q. Chen, J. Jost, and G. Wang, A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl, and Finsler geometry, J. Geom. Anal. 25 (2015), no. 4, 2407-2426.
DOI
|
19 |
Q. Chen and H. Qiu, Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V-Laplacian, Ann. Global Anal. Geom. 50 (2016), no. 1, 47-64.
|