• Title/Summary/Keyword: Linear scale

Search Result 1,473, Processing Time 0.039 seconds

A New Error Compensation Method in Linear Encoder Using a Phase-Modulated Grating (위상 변환 격자를 이용한 선형 엔코더의 오차 보상법)

  • Song, Ju-Ho;Kim, Gyeong-Chan;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.147-154
    • /
    • 2000
  • A new hardware compensation method reducing displacement measurement errors, caused by tilt of index scale in moire linear encoders, has been developed. In conventional moire linear encoders, the detectors are aligned perpendicular to the line of moire fringes this structure is very sensitive to an unwanted tilt of the gratings. In this paper, a newly designed grating, called a phase-modulated grating, is developed to compensate for non-orthogonal errors. By using the phase-modulated grating instead of a conventional index, it is possible to reduce non-orthogonal errors of moire linear encoders.

  • PDF

Development of a Aerostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 공기정압안내면 개발)

  • 박종하;황주호;박천홍;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.36-40
    • /
    • 2003
  • In order to discuss the availability of aerostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156N and a laser scale with the resolution of $0.01\mu\textrm{m}$ are used as the feeding system. The experiments are performed on the static stiffness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway also has $0.21\mu\textrm{m}$ of positioning error and $0.09\mu\textrm{m}$ of repeatability, and it shows the stable response against the $0.01\mu\textrm{m}$ resolution step command. The velocity variation of feeding system is less than 0.6%. From these results, it is confirmed that the aerostatic guideway driven by the coreless linear motion is very useful for the ultra precision machine tools.

  • PDF

An alleviant technique for solving III-Conditioned Linear Systems Using Spectral Adaptive Mapping (스펙트럼 적응 사상을 이용한 선형시스템의 불량조건 완화기법)

  • Chun, Jae-Woong;Cho, Ki-Seon;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.110-112
    • /
    • 2003
  • This paper presents an alleviant technique for solving ill-conditioned linear systems using spectral adaptive mapping, which is based on spectral mapping theorem. The conventional approaches to solve the ill-conditioned linear systems are divided into reformulation and alleviant technique. So far, the alleviant technique is evaluated the most effective one. In this paper, an adaptive mapping of spectrum is adopted to alleviate the condition number of ill-conditioned linear systems. A shift constant, which is a dominant factor of the spectral adaptive mapping that are proposed, is assessed by the system spectrum. The proposed spectral adaptive mapping technique is tested to demonstrated the validation on several size Hilbert matrices and small scale power systems, which are provide the promising results.

  • PDF

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference

  • Nguyen, Cong-Uy;Hoang, Truong-Vinh;Hadzalic, Emina;Dobrilla, Simona;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.411-438
    • /
    • 2022
  • In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.

Performance Comparison of Optimal Power Flow Algorithms for LMP Calculations of the Full Scale Korean Power System

  • Lee, Sungwoo;Kim, Wook;Kim, Balho H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.109-117
    • /
    • 2015
  • This paper proposes the comparison results of various optimal power flow algorithms (OPF) to calculate the locational marginal prices (LMP) of the unreduced full scale Korean transmission system. Five different types of optimal power flow models are employed: Full AC OPF, Cubic AC OPF, Quadratic AC OPF, Linear AC OPF and DC OPF. As the results, full AC OPF and cubic AC OPF model provides LMP calculation results very similar to each other while the calculation time of cubic AC OPF model is faster than that of the Full AC OPF. Other simplified OPF models, quadratic AC OPF, linear AC OPF and DC OPF offer erroneous results even though the calculation times are much faster than the Full AC OPF and the Cubic AC OPF. Given the condition that the OPF models sometimes fail to find the optimal solution due to the severe complexity of the Korean transmission power system, the Full AC OPF should be used as the primary OPF model while the Cubic AC OPF can be a promising backup OPF model for the LMP calculations and/or real-time operation.

Real-Time Continuous-Scale Image Interpolation with Directional Smoothing (방향적응적인 연속 비율 실시간 영상 보간 방식 -방향별 가우시안 필터를 사용한 연속 비율 지원 영상 보간 필터-)

  • Yoo, Yoon-Jong;Jun, Sin-Young;Maik, Vivek;Paik, Joon-Ki
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.615-619
    • /
    • 2009
  • A real-time, continuous-scale image interpolation method is proposed based on bi-linear interpolation with directionally adaptive low-pass filtering. The proposed algorithm has been optimized for hardware implementation. The original bi-linear interpolation method has blocking artifact. The proposed algorithm solves this problem using directionally adaptive low-pass filtering. It can also solve the severely problem by selection choosing low-pass filter coefficients. Therefore the proposed interpolation algorithm can realize a high-quality image scaler for various imaging systems, such as digital camera, CCTV and digital flat panel display, to name a few.

  • PDF

Case Studies of Nonlinear Response Structural Optimization Using Equivalent Loads (등가하중법을 이용한 비선형 반응 구조최적설계 사례연구)

  • Kim, Yong-Il;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1059-1068
    • /
    • 2007
  • Nonlinear response structural optimization is performed using equivalent loads (NROEL). Nonlinear response optimization is extremely cost because many nonlinear analyses are required. In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. The primitive from of theory has been published. In this research, the theory is investigated with large scale example problems. Four examples are solved by using NROEL. Conventional optimization with sensitivity analysis using the finite difference method (FDM) is also applied to the same examples. Moreover, response surface optimization method is applied to the last two examples. The results of the optimizations are compared. In nonlinear response optimization of large scale problems, hundreds (or even thousands) of nonlinear analyses are expected to satisfy the convergence criteria. However, in nonlinear response optimization using equivalent loads, only tens of nonlinear analyses are required. The results are discussed and the usefulness of NROEL is presented.

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.

Nonlinear buckling and free vibration of curved CNTs by doublet mechanics

  • Eltaher, Mohamed A.;Mohamed, Nazira;Mohamed, Salwa A.
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.213-226
    • /
    • 2020
  • In this manuscript, static and dynamic behaviors of geometrically imperfect carbon nanotubes (CNTs) subject to different types of end conditions are investigated. The Doublet Mechanics (DM) theory, which is length scale dependent theory, is used in the analysis. The Euler-Bernoulli kinematic and nonlinear mid-plane stretching effect are considered through analysis. The governing equation of imperfect CNTs is a sixth order nonlinear integro-partial-differential equation. The buckling problem is discretized via the differential-integral-quadrature method (DIQM) and then it is solved using Newton's method. The equation of linear vibration problem is discretized using DIQM and then solved as a linear eigenvalue problem to get natural frequencies and corresponding mode shapes. The DIQM results are compared with analytical ones available in the literature and excellent agreement is obtained. The numerical results are depicted to illustrate the influence of length scale parameter, imperfection amplitude and shear foundation constant on critical buckling load, post-buckling configuration and linear vibration behavior. The current model is effective in designing of NEMS, nano-sensor and nano-actuator manufactured by CNTs.

DETERMINATION OF LONGISSIMUS MUSCLE AREA IN PIG WITH ULTRASONIC LINEAR ELECTRONIC SCANNER

  • Irie, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.2
    • /
    • pp.229-235
    • /
    • 1992
  • The usefulness of a portable linear electronic scanner. B-mode ultrasonic machine, was evaluated for estimating the longissimus muscle area from ultrasonic measurement of the muscle depth in 22 live pigs. The electronic scanner was easy to operate for muscle measurements in live pigs, which did not have to be held but were caged. The cross-sectional images of longissimus muscle and covering muscles and fat appeared on the monitor with grey scale in real time. It was easy to identify the ultrasonograms of fat and muscular tissues because the images differed in the degree of the grey scale. The longissimus muscle had less echogenic image than the other muscles. The boundary lines between first, second or third layers of backfat and the longissimus muscle were distinct on the ultrasonogram. The ultrasonic measurement at the shoulder was not acceptable because of the unstable measurements and the complex tissue structure. The repeatabilities for the measurements of longissimus muscle depth at one-half body length and last rib were acceptable. The simple correlation coefficients between ultrasonic estimates of the muscle depth in live pigs and the actual areas in the carcass, were 0.50 and 0.55 at the last rib and the one-half body length, respectively. Therefore, those positions were similarly suitable to measure. The method of electronic scanner for determining longissimus muscle area from the muscle depth was suitable for practical use in the field because of the simple and inexpensive technique.