Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.2.213

Nonlinear buckling and free vibration of curved CNTs by doublet mechanics  

Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
Mohamed, Nazira (Department of Engineering Mathematics, Faculty of Engineering, Zagazig University)
Mohamed, Salwa A. (Department of Engineering Mathematics, Faculty of Engineering, Zagazig University)
Publication Information
Smart Structures and Systems / v.26, no.2, 2020 , pp. 213-226 More about this Journal
Abstract
In this manuscript, static and dynamic behaviors of geometrically imperfect carbon nanotubes (CNTs) subject to different types of end conditions are investigated. The Doublet Mechanics (DM) theory, which is length scale dependent theory, is used in the analysis. The Euler-Bernoulli kinematic and nonlinear mid-plane stretching effect are considered through analysis. The governing equation of imperfect CNTs is a sixth order nonlinear integro-partial-differential equation. The buckling problem is discretized via the differential-integral-quadrature method (DIQM) and then it is solved using Newton's method. The equation of linear vibration problem is discretized using DIQM and then solved as a linear eigenvalue problem to get natural frequencies and corresponding mode shapes. The DIQM results are compared with analytical ones available in the literature and excellent agreement is obtained. The numerical results are depicted to illustrate the influence of length scale parameter, imperfection amplitude and shear foundation constant on critical buckling load, post-buckling configuration and linear vibration behavior. The current model is effective in designing of NEMS, nano-sensor and nano-actuator manufactured by CNTs.
Keywords
imperfect CNTs; doublet mechanics theory; differential-integral-quadrature method (DIQM); buckling; vibration;
Citations & Related Records
Times Cited By KSCI : 21  (Citation Analysis)
연도 인용수 순위
1 Eberhardt, O. and Wallmersperger, T. (2014), "Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach", Smart Struct. Syst., Int. J., 13(4), 685-709. https://doi.org/10.12989/sss.2014.13.4.685   DOI
2 Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., Int. J., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113
3 Gul, U. and Aydogdu, M. (2018a), "Structural modelling of nanorods and nanobeams using doublet mechanics theory", Int. J. Mech. Mater. Des., 14(2), 195-212. https://doi.org/10.1007/s10999-017-9371-8   DOI
4 Gul, U. and Aydogdu, M. (2018b), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B: Eng., 137, 60-67. https://doi.org/10.1016/j.compositesb.2017.11.005   DOI
5 Gul, U. and Aydogdu, M. (2019), "Vibration analysis of Love nanorods using doublet mechanics theory", J. Brazil. Soc. Mech. Sci. Eng., 41(8), 351. https://doi.org/10.1007/s40430-019-1849-x   DOI
6 Gul, U., Aydogdu, M. and Gaygusuzoglu, G. (2017), "Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics", Compos. Struct., 160, 1268-1278. https://doi.org/10.1016/j.compstruct.2016.11.023   DOI
7 Gul, U., Aydogdu, M. and Gaygusuzoglu, G.J.J.o.E.M. (2018), "Vibration and buckling analysis of nanotubes (nanofibers) embedded in an elastic medium using Doublet Mechanics", J. Eng. Mathe., 109(1), 85-111. https://doi.org/10.1007/s10665-017-9908-8   DOI
8 Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375   DOI
9 Hehre, W.J. (1976), "Ab initio molecular orbital theory", Accounts Chem. Res., 9(11), 399-406. https://doi.org/10.1021/ar50107a003   DOI
10 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0   DOI
11 Kojic, M., Vlastelica, I., Decuzzi, P., Granik, V.T. and Ferrari, M. (2011), "A finite element formulation for the doublet mechanics modeling of microstructural materials", Comput. Methods Appl. Mech. Eng., 200(13-16), 1446-1454. https://doi.org/10.1016/j.cma.2011.01.001   DOI
12 Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Mathe. Computat., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002   DOI
13 Eltaher, M.A. and Agwa, M.A. (2016), "Analysis of sizedependent mechanical properties of CNTs mass sensor using energy equivalent model", Sensors Actuat. A: Phys., 246, 9-17. https://doi.org/10.1016/j.sna.2016.05.009   DOI
14 Eltaher, M.A. and Mohamed, N (2020a), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., Int. J., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501
15 Eltaher, M.A. and Mohamed, N. (2020b), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Mathe. Computat., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311   DOI
16 Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014a), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Mathe. Computat., 229, 283-295. http://dx.doi.org/10.1016/j.amc.2013.12.072   DOI
17 Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014b), "Mechanical analysis of higher order gradient nanobeams", Appl. Mathe. Computat., 229, 260-272. http://dx.doi.org/10.1016/j.amc.2013.12.076   DOI
18 Agwa, M.A. and Eltaher, M.A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9   DOI
19 Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065
20 Zhou, L.G. and Shi, S.Q. (2002), "Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage", Computat. Mater. Sci., 23(1-4), 166-174. https://doi.org/10.1016/S0927-0256(01)00233-6   DOI
21 Akgoz, B. and Civalek, O. (2011), "Application of strain gradient elasticity theory for buckling analysis of protein microtubules", Current Appl. Phys., 11(5), 1133-1138. https://doi.org/10.1016/j.cap.2011.02.006   DOI
22 Eltaher, M.A., Almalki, T.A., Almitani, K.H. and Ahmed, K.I.E. (2019c), "Participation factor and vibration of carbon nanotube with vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/JNanoR.57.158   DOI
23 Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016a), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. http://dx.doi.org/10.1016/j.compstruct.2016.07.013   DOI
24 Eltaher, M.A., Agwa, M.A. and Mahmoud, F.F. (2016b), "Nanobeam sensor for measuring a zeptogram mass", Int. J. Mech. Mater. Des., 12(2), 211-221. https://doi.org/10.1007/s10999-015-9302-5   DOI
25 Akgoz, B. and Civalek, O. (2018), "Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment", Compos. Part B: Eng., 150, 68-77. https://doi.org/10.1016/j.compositesb.2018.05.049   DOI
26 Ameri, A., Ajori, S. and Ansari, R. (2020), "On the buckling behavior of functionalized single-and double-walled carbon nanotubes with azobenzene in the aqueous environment: a molecular dynamics study", Struct. Chem., 31(1), 371-384. https://doi.org/10.1007/s11224-019-01418-6   DOI
27 Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Computat. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136
28 Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019a), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv.in Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039   DOI
29 Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E. and Abdraboh, A.M. (2019b), "Modal participation of fixed-fixed single-walled carbon nanotube with vacancies", Int. J. Adv. Struct. Eng., 11(2), 151-163. https://doi.org/10.1007/s40091-019-0222-8   DOI
30 Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019d), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.12989/sem.2019.70.6.737   DOI
31 Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019e), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Mathe. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026   DOI
32 Mehralian, F., Beni, Y.T. and Kiani, Y. (2017), "Molecular dynamics study on the thermal buckling of carbon nanotubes in the presence of pre-load", Mater. Res. Express, 4(1), 015011. https://doi.org/10.1088/2053-1591/aa576a   DOI
33 Kresse, G. and Hafner, J. (1993), "Ab initio molecular dynamics for liquid metals", Phys. Rev. B, 47(1), 558. https://doi.org/10.1103/PhysRevB.47.558   DOI
34 Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8   DOI
35 Li, C. and Chou, T.W. (2004), "Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach", Mech. Mater., 36(11), 1047-1055. https://doi.org/10.1016/j.mechmat.2003.08.009   DOI
36 Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Experim. Mech., 3(1), 1-7.   DOI
37 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Non-Linear Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014   DOI
38 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737
39 Arani, A.G., Pourjamshidian, M., Arefi, M. and Arani, M.R. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141
40 Amir, S., Arshid, E. and Arani, M.R.G. (2019), "Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nanocomposite face sheets subjected to multi-physical pre loads", Smart Struct. Syst., Int. J., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429
41 Arda, M. and Aydogdu, M. (2020), "Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass", Mech. Based Des. Struct. Mach., 1-17. https://doi.org/10.1080/15397734.2020.1728548
42 Atkins, P.W. and Friedman, R.S. (2011), Molecular Quantum Mechanics, Oxford University Press.
43 Aydogdu, M. and Gul, U. (2018), "Buckling analysis of double nanofibers embeded in an elastic medium using doublet mechanics theory", Compos. Struct., 202, 355-363. https://doi.org/10.1016/j.compstruct.2018.02.015   DOI
44 Aydogdu, M. and Gul, U. (2020), "Longitudinal vibration of double nanorod systems using doublet mechanics theory", Struct. Eng. Mech., Int. J., 73(1), 37-52. https://doi.org/10.12989/sem.2020.73.1.037
45 Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238   DOI
46 Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput. https://doi.org/10.1007/s00366-020-00976-2
47 Peng, S. and Cho, K. (2003), "Ab initio study of doped carbon nanotube sensors", Nano Lett., 3(4), 513-517. https://doi.org/10.1021/nl034064u   DOI
48 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
49 Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Sizedependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4), 381. https://doi.org/10.1140/epjp/s13360-020-00385-w   DOI
50 Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., Int. J., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
51 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5   DOI
52 Fatahi-Vajari, A. and Imam, A. (2016a), "Axial vibration of singlewalled carbon nanotubes using doublet mechanics", Indian J. Phys., 90(4), 447-455. https://doi.org/10.1007/s12648-015-0775-8   DOI
53 Fatahi-Vajari, A. and Imam, A. (2016b), "Torsional vibration of single-walled carbon nanotubes using doublet mechanics", Zeitschrift fur angewandte Mathematik und Physik, 67(4), 81. https://doi.org/10.1007/s00033-016-0675-6   DOI
54 Ferrari, M., Granik, V.T., Granik, V.T., Imam, A. and Nadeau, J.C. (Eds.) (1997), Advances in Doublet Mechanics, (Vol. 45), Springer Science & Business Media.
55 Gao, G., Cagin, T. and Goddard III, W.A. (1998), "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology, 9(3), 184. https://doi.org/10.1088/0957-4484/9/3/007   DOI
56 Granik, V.T. and Ferrari, M. (1993), "Microstructural mechanics of granular media", Mech. Mater., 15(4), 301-322. https://doi.org/10.1016/0167-6636(93)90005-C   DOI
57 Gul, U. and Aydogdu, M. (2017), "Wave propagation in double walled carbon nanotubes by using doublet mechanics theory", Physica E: Low-dimens. Syst. Nanostruct., 93, 345-357. https://doi.org/10.1016/j.physe.2017.07.003   DOI
58 Tabbakh, M. and Nasihatgozar, M. (2018), "Buckling analysis of nanocomposite plates coated by magnetostrictive layer", Smart Struct. Syst., Int. J., 22(6), 743-751. https://doi.org/10.12989/sss.2018.22.6.743
59 Shokravi, M. (2018), "Dynamic buckling of smart sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory", Smart Struct. Syst., Int. J., 22(3), 327-334. https://doi.org/10.12989/sss.2018.22.3.327
60 Shokravi, M. and Jalili, N. (2017), "Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubesreinforced sandwich microplates considering structural damping", Smart Struct. Syst., Int. J., 20(5), 583-593. https://doi.org/10.12989/sss.2017.20.5.583
61 Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001   DOI
62 Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rational Mech. Anal., 11(1), 385-414.   DOI
63 Xiao, J.R., Gama, B.A. and Gillespie Jr, J.W. (2005), "An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes", Int. J. Solids Struct., 42(11-12), 3075-3092. https://doi.org/10.1016/j.ijsolstr.2004.10.031   DOI
64 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X   DOI
65 Rapaport, D.C. and Rapaport, D.C.R. (2004), The Art of Molecular Dynamics Simulation, Cambridge University Press.
66 Yayli, M.O. and Asa, E. (2019), "Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics", Microsyst. Technol., 1-10. https://doi.org/10.1007/s00542-019-04512-1