Browse > Article
http://dx.doi.org/10.12989/csm.2022.11.5.411

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference  

Nguyen, Cong-Uy (Royallieu Center of Research, University of Technology of Compiègne/Sorbonne University Alliance)
Hoang, Truong-Vinh (Chair of Mathematics for Uncertainty Quantification, RWTH Aachen University)
Hadzalic, Emina (Faculty of Civil Engineering, University of Sarajevo)
Dobrilla, Simona (Royallieu Center of Research, University of Technology of Compiègne/Sorbonne University Alliance)
Matthies, Hermann G. (Institute of Scientific Computing, Technical University of Braunschweig)
Ibrahimbegovic, Adnan (Royallieu Center of Research, University of Technology of Compiègne/Sorbonne University Alliance)
Publication Information
Coupled systems mechanics / v.11, no.5, 2022 , pp. 411-438 More about this Journal
Abstract
In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.
Keywords
Bayesian update; Gauss-Markov-Kalman filter; inelastic and multi-scale problems; parameter identification;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Kumar, P., Friedman, N., Zander, E. and Radespiel, R. (2018), "Bayesian calibration of volume averaged RANS model parameters for turbulent flow simulations over porous materials", New Results in Numerical and Experimental Fluid Mechanics XI, 479-488.
2 Marsili, F., Friedman, N. and Croce, P. (2015), "Parameter identification via gPCE-based stochastic inverse methods for reliability assessment of existing structures", International Probabilistic Workshop, 112-123. https://doi.org/10.13140/RG.2.1.1843.5600.   DOI
3 Matthies, H.G., Zander, E., Rosic, B.V., Litvinenko, A. and Pajonk, O. (2016), "Inverse problems in a Bayesian setting", Comput. Meth. Solid. Fluid., 245-286. https://doi.org/10.1007/978-3-319-27996-1_10.   DOI
4 Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case", Int. J. Solid. Struct., 196-197, 154-170. https://doi.org/10.1016/j.ijsolstr.2020.04.018.   DOI
5 Nguyen, T.V.M., Nguyen, L.T.K., Rabczuk, T. and Zhuang, X. (2020), "A surrogate model for computational homogenization of elastostatics at finite strain using high-dimensional model representation-based neural network", Int. J. Numer. Meth. Eng., 121(21), 4811-4842. https://doi.org/10.1002/nme.6493.   DOI
6 Ibrahimbegovic, A., Matthies, H.G. and Karavelic, E. (2020), "Reduced model of macro-scale stochastic plasticity identification by Bayesian inference: Application to quasi-brittle failure of concrete", Comput. Meth. Appl. Mech. Eng., 372, 113428. https://doi.org/10.1016/j.cma.2020.113428.   DOI
7 Ibrahimbegovic, A., Niekamp, R., Kassiotis, C., Markovic, D. and Matthies, H.G. (2014), "Code-coupling strategy for efficient development of computer software in multiscale and multiphysics nonlinear evolution problems in computational mechanics", Adv. Eng. Softw., 72, 8-17. https://doi.org/10.1016/j.advengsoft.2013.06.014.   DOI
8 Ibrahimbegovic, A., Rukavina, I. and Suljevic. S. (2021), "Multiscale model with embedded discontinuity discrete approximation capable of representing full set of 3d failure modes for heterogeneous materials with no scale separation", Int. J. Multisc. Comput. Eng., 1-32. https://doi.org/10.1615/IntJMultCompEng.2021038378.   DOI
9 Janicke, R., Diebels, S., Sehlhorst, H.G. and Duster, A. (2009), "Two-scale modelling of micromorphic continua", Continuum Mech. Thermodyn., 21(4), 297-315. https://doi.org/10.1007/s00161-009-0114-4.   DOI
10 Janicke, R., Larsson, F. and Runesson, K. (2020), "A poro-viscoelastic substitute model of fine-scale poroelasticity obtained from homogenization and numerical model reduction", Comput. Mech., 65(4), 1063-1083. https://doi.org/10.1007/s00466-019-01808-x.   DOI
11 Romer, U., Bollhofer, M., Sreekumar, H., Blech, C. and Langer, S. (2021), "An adaptive sparse grid rational arnoldi method for uncertainty quantification of dynamical systems in the frequency domain", Int. J. Numer. Meth. Eng., 122, 5487-5511. https://doi.org/10.1002/nme.6761.   DOI
12 Rosic, B.V., Litvinenko, A., Pajonk, O. and Matthies, H.G. (2012), "Sampling-free linear Bayesian update of polynomial chaos representations", J. Comput. Phys., 231(17), 5761-5787. https://doi.org/10.1016/j.jcp.2012.04.044.   DOI
13 Xiu, D. (2010), Numerical Methods for Stochastic Computations, Princeton University Press, Princeton, New Jersey, USA.
14 Rosic, B.V., Sykora, J., Pajonk, O., Kucerova, A. and Matthies, H.G. (2014), "Comparison of numerical approaches to Bayesian updating", Technical University of Braunschweig, Report.
15 Rukavina, I., Ibrahimbegovic, A., Do, X.N. and Markovic, D. (2019), "Ed-fem multiscale computation procedure for localized failure", Couple. Syst. Mech., 8(2), 111-127. https://doi.org/10.12989/csm.2019.8.2.111.   DOI
16 Rus, G., Palma, R. and Perez-Aparicio, J.L. (2006), "Damage identification inverse problem for a piezoelectric material", Third European Workshop on Structural Health Monitoring, Granada, Spain.
17 Sarfaraz, M.S., Rosic, B.V., Matthies, H.G. and Ibrahimbegovic, A. (2018), "Stochastic upscaling via linear Bayesian updating", Couple. Syst. Mech., 7, 211-231. https://doi.org/10.12989/csm.2018.7.2.211.   DOI
18 Wu, T., Rosic, B.V., De Lorenzis, L. and Matthies, H.G. (2021), "Parameter identification for phase-field modeling of fracture: a Bayesian approach with sampling free update", Comput. Mech., 67(2), 435-453. https://doi.org/10.1007/s00466-020-01942-x.   DOI
19 Xiu, D. and Karniadakis, G.E. (2002), "The wiener-askey polynomial chaos for stochastic differential equations", SIAM J. Scientif. Comput., 24(2), 619-644. https://doi.org/10.1137/S1064827501387826.   DOI
20 Xiu, D. and Karniadakis, G.E. (2002), "The Wiener-Askey polynomial chaos for stochastic differential equations", SIAM J. Scientif. Comput., 14(2), 619-644. https://doi.org/10.1137/S1064827501387826.   DOI
21 Yi, S.R., Wang, Z. and Song, J. (2019), "Gaussian mixture-based equivalent linearization method (gm-elm) for fragility analysis of structures under nonstationary excitations", Earthq. Eng. Struct. Dyn., 48(10), 1195-1214. https://doi.org/10.1002/eqe.3185.   DOI
22 Zander, E. (2011), "SGLIB", Institute of Scientific Computing-Technical University of Braunschweig. https://github.com/ezander/sglib-testing.
23 Smith, R.C. (2013), Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, Philadelphia, USA.
24 Janouchova, E., Sykora, J. and Kucerova, A. (2018), "Polynomial chaos in evaluating failure probability: A comparative study", Appl. Math., 63(6), 713-737. https://doi.org/10.21136/AM.2018.0335-17.   DOI
25 Kim, J. and Song, J. (2021), "Quantile surrogates and sensitivity by adaptive gaussian process for efficient reliability-based design optimization", Mech. Syst. Signal Pr., 161, 107962. https://doi.org/10.1016/j.ymssp.2021.107962.   DOI
26 Sarfaraz, M.S., Rosic, B.V., Matthies, H.G. and Ibrahimbegovic, A. (2020), "Bayesian stochastic multi-scale analysis via energy considerations", Adv. Model. Simul. Eng. Sci., 7(1), 1-35. https://doi.org/10.1186/s40323-020-00185-y.   DOI
27 Schott, B., Rasthofer, U., Gravemeier, V. and Wall, W.A. (2015), "A face-oriented stabilized nitsche-type extended variational multiscale method for incompressible two-phase flow", Int. J. Numer. Meth. Eng., 104(7), 721-748. https://doi.org/10.1002/nme.4789.   DOI
28 Schuler, T., Manke, R., Janicke, R., Radenberg, M. and Steeb, H. (2013), "Multi-scale modelling of elastic/viscoelastic compounds", J. Appl. Math. Mech., 93(2-3), 126-137. https://doi.org/10.1002/zamm.201200055.   DOI
29 Stabile, G. and Rosic, B.V. (2020), "Bayesian identification of a projection-based reduced order model for computational fluid dynamics", Comput. Fluid., 201, 104477. https://doi.org/10.1016/j.compfluid.2020.104477.   DOI
30 Bui, D.K., Nguyen, T.N., Ngo, T.D. and Nguyen, X.H. (2020), "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings", Energy, 190, 116370. https://doi.org/10.1016/j.energy.2019.116370.   DOI
31 Chatzigeorgiou, G., Javili, A. and Steinmann, P. (2015), "Multiscale modelling for composites with energetic interfaces at the micro-or nanoscale", Math. Mech. Solid., 20(9), 1130-1145. https://doi.org/10.1177/1081286513516122.   DOI
32 Chiachio-Ruano, J., Chiachio-Ruano, M. and Sankararaman, S. (2021), Bayesian Inverse Problems: Fundamentals and Engineering Applications, CRC Press, USA.
33 Ghanem, R., Soize, C., Mehrez, L. and Aitharaju, V. (2020), "Probabilistic learning and updating of a digital twin for composite material systems", Int. J. Numer. Meth. Eng., 1-17. https://doi.org/10.1002/nme.6430.   DOI
34 Kowalsky, U., Zumendorf, T. and Dinkler, D. (2007), "Random fluctuations of material behaviour in fe-damage-analysis", Comput. Mater. Sci., 39(1), 8-16. https://doi.org/10.1016/j.commatsci.2006.05.004.   DOI
35 Friedman, N., Kumar, P., Zander, E. and Matthies, H.G. (2016), "Bayesian calibration of model coefficients for a simulation of flow over porous material involving SVM classification", PAMM, 16(1), 669-670. https://doi.org/10.1002/pamm.201610323.   DOI
36 Galetzka, A., Bontinck, Z., Romer, U. and Schops, S. (2019), "A multilevel Monte-Carlo method for high-dimensional uncertainty quantification of low-frequency electromagnetic devices", IEEE Trans. Magnet., 55(8), 1-12. https://doi.org/10.1109/TMAG.2019.2911053.   DOI
37 Georg, N. and Romer, U. (2020), "Conformally mapped Polynomial chaos expansions for maxwell's source problem with random input data", Int. J. Numer. Model.: Electr. Network., Dev. Field., 33(6), 2776. https://doi.org/10.1002/jnm.2776.   DOI
38 Gerasimov, T., Romer, U., Vondrejc, J., Matthies, H.G. and De Lorenzis, L. (2020), "Stochastic phase-field modeling of brittle fracture: Computing multiple crack patterns and their probabilities", Comput. Meth. Appl. Mech. Eng., 372, 113353. https://doi.org/10.1016/j.cma.2020.113353.   DOI
39 Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020), "Transfer learning enhanced physics informed neural network for phase-field modeling of fracture", Theor. Appl. Fract. Mech., 106, 102447. https://doi.org/10.1016/j.tafmec.2019.102447.   DOI
40 Gravemeier, V., Gee, M.W., Kronbichler, M. and Wall, W.A. (2010), "An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow", Comput. Meth. Appl. Mech. Eng., 199(13-16), 853-864. https://doi.org/10.1016/j.cma.2009.05.017.   DOI
41 Hoang, T.V. and Matthies, H.G. (2021), "An efficient computational method for parameter identification in the context of random set theory via Bayesian inversion", Int. J. Uncertain. Quantif., 11(4), 1-18. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020031869.   DOI
42 Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Couple. Syst. Mech., 7, 659-668. https://doi.org/10.12989/csm.2018.7.6.649.   DOI
43 Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2019), "Theoretical formulation and seamless discrete approximation for localized failure of saturated poro-plastic structure interacting with reservoir", Comput. Struct., 214, 73-93. https://doi.org/10.1016/j.compstruc.2019.01.003.   DOI
44 Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium", Couple. Syst. Mech., 9, 113-134. https://doi.org/10.12989/csm.2020.9.2.125.   DOI
45 Hoang, T.V., Krumscheid, S., Matthies, H.G. and Tempone, R. (2021), "Machine learning-based conditional mean filter: A generalization of the ensemble kalman filter for nonlinear data assimilation", Proc. Appl. Math. Mech., 20, 1. https://doi.org/10.1002/pamm.202000320.   DOI
46 Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer Science & Business Media, Dordrecht, Netherland.
47 Ibrahimbegovic, A. and Matthies, H.G. (2017), "Probabilistic multiscale analysis of inelastic localized failure in solid mechanics", Comput. Assist. Meth. Eng. Sci., 19(3), 277-304.
48 Kozar, I., Bede, N., Bogdanic, A. and Mrakovcic, S. (2021), "Data driven inverse stochastic models for fiber reinforced concrete", Couple. Syst. Mech., 10(6), 509-520. https://doi.org/10.12989/csm.2021.10.6.509.   DOI
49 Armstrong, P.J. and Frederick, C.O. (1966). A Mathematical Representation of the Multiaxial Bauschinger Effect, Vol. 731, Berkeley Nuclear Laboratories, Berkeley, CA.
50 Klinge, S., Bartels, A. and Steinmann, P. (2012), "Modeling of curing processes based on a multi-field potential. single-and multiscale aspects", Int. J. Solid. Struct., 49(17), 2320-2333. https://doi.org/10.1016/j.ijsolstr.2012.04.034.   DOI
51 Kucerova, A. and Leps, M. (2014), "Soft computing-based calibration of microplane m4 model parameters: Methodology and validation", Adv. Eng. Softw., 72, 226-235. https://doi.org/10.1016/j.advengsoft.2014.01.013.   DOI
52 Le, T.T. and Le, M.V. (2021), "Development of user-friendly kernel-based gaussian process regression model for prediction of load-bearing capacity of square concrete-filled steel tubular members", Mater. Struct., 54(2), 1-24. https://doi.org/10.1617/s11527-021-01646-5.   DOI
53 Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Hybrid-stress triangular finite element with enhanced performance for statics and dynamics", Comput. Meth. Appl. Mech. Eng., 372, 11338. https://doi.org/10.1016/j.cma.2020.113381.   DOI
54 Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Isotropic damage model of Kachanov: Theoretical formulation and numerical simulation", The 2020 International Conference on Advances in Coupled Systems Mechanics (ACSM20), Seoul, Korea.
55 Nguyen, C.U., Huynh, T.C. and Kim, J.T. (2017), "Damage identification of wind turbine tower using modal properties-based artificial neural networks", The 13th International Workshop on Advanced Smart Materials and Smart Structures Technology, Tokyo, Japan.
56 Mares, T., Janouchova, E. and Kucerova, A. (2016), "Artificial neural networks in the calibration of nonlinear mechanical models", Adv. Eng. Softw., 95, 68-81. https://doi.org/10.1016/j.advengsoft.2016.01.017.   DOI
57 Matthies, H.G., Litvinenko, A., Rosic, B.V. and Zander, E. (2016), "Bayesian parameter estimation via filtering and functional approximations", arXiv preprint, arXiv:1611.09293. https://doi.org/10.48550/arXiv.1611.09293.   DOI
58 Matthies, H.G., Zander, E., Rosic, B.V. and Litvinenko, A. (2016), "Parameter estimation via conditional expectation: a Bayesian inversion", Adv. Model. Simul. Eng. Sci., 3(1), 1-21. https://doi.org/10.1186/s40323-016-0075-7.   DOI
59 Nguyen, C.U., Huynh, T.C. and Kim, J.T. (2018), "Vibration-based damage detection in wind turbine towers using artificial neural networks", Struct. Monit. Mainten., 5(4), 507. https://doi.org/10.12989/smm.2018.5.4.507.   DOI
60 Noii, N., Khodadadian, A. and Wick, T. (2020), "Bayesian inversion for anisotropic hydraulic phase-field fracture", Comput. Meth. Appl. Mech. Eng., 386, 114118. https://doi.org/10.1016/j.cma.2021.114118.   DOI
61 Romer, U. (2021), "Methods of uncertainty analysis and quantification", Technical University of Braunschweig, Lecture.