• Title/Summary/Keyword: Linear feedback control systems

Search Result 552, Processing Time 0.032 seconds

Output feedback model predictive control for Wiener model with parameter dependent Lyapunov function

  • Yoo, Woo-Jong;Ji, Dae-Hyun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.685-689
    • /
    • 2005
  • In this paper, we consider a robust output feedback model predictive controller(MPC) design for Wiener model. Nonlinearities that couldn't be represented in static nonlinearity block of Wiener model are regarded as uncertainties in linear block. An dynamic output feedback controller design method is presented for Wiener MPC. According to MPC algorithm, the control law is computed based on linear matrix inequality(LMI)at each sampling time by solving convex optimization. Also, a new parameter dependent Lyapunov function is proposed to get a less conservative condition. The results are illustrated with numerical example.

  • PDF

RBF Network Based QFT Parameter-Scheduling Control Design for Linear Time-Varying Systems and Its Application to a Missile Control System (시변시스템을 위한 RBF 신경망 기반의 QFT 파라미터계획 제어기법과 alt일 제어시스템에의 적용)

  • 임기홍;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.199-199
    • /
    • 2000
  • Most of linear time-varying(LTV) systems except special cases have no general solution for the dynamic equations. Thus, it is difficult to design time-varying controllers in analytic ways, and other control design approaches such as robust control have been applied to control design for uncertain LTI systems which are the approximation of LTV systems have been generally used instead. A robust control method such as quantitative feedback theory(QFT) has an advantage of guaranteeing the stability and the performance specification against plant parameter uncertainties in frozen time sense. However, if these methods are applied to the approximated linear time-invariant(LTI) plants which have large uncertainty, the designed control will be constructed in complicated forms and usually not suitable for fast dynamic performance. In this paper, as a method to enhance the fast dynamic performance, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks for LTV systems with bounded time-varying parameters.

  • PDF

On the Undershoot Compensation in MIMO Systems with Nonminimum Phase Zeros

  • Lee, Sang-Yong;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.30-35
    • /
    • 2003
  • In the control system analysis and synthesis, the nonminimum phase system has some difficulties due to the undershoot behaviour and the constrained sensitivity function. SISO problems has been widely investigated in the literatures, and it is well known that the undershoot cannot be eliminated by any linear feedback control. However, the undershoot compensation in MIMO system is less studied, and this paper is to deal with the zero property and the nonminimum phase behaviour of the MIMO system. Firstly, some definitions of the zeros will be introduced. Second, some systems including nonminimum phase transmission zeros are exemplified to show that the undershoot behaviour could be eliminated by a linear feedback in MIMO systems.

  • PDF

Active Vibration Control of a Structure with Output Feedback Based on Simultaneous Optimization Design Method

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • Recent advances in the field of control theory have enabled us to design active vibration control systems for various structures. In many studies, the controller used to suppress vibration has been synthesized for the given mathematical model of structure. In these cases, the designer has not been able to utilize the degree of freedom to adjust the structural parameters of the control object. To overcome this problem, so called 'Structure/Control Simultaneous Optimization Method' is used. In this context of view, this paper is concerned with the active vibration control of bridge towers, platforms and ocean vehicles etc. Simultaneous design method is used to achieve optimal system performance. Here, a general framework for the simultaneous design problem of output feedback case is introduced based on LMI (Linear Matrix Inequality). The simulation results show that the proposed design method achieves desirable control performance.

  • PDF

Output feedback $H^{\inty}$ Control for Linear Systems with Time-varying Delayed State

  • Jeung, Eun-Tae;Oh, Do-Chang;Kim, Jong-Hae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.48-51
    • /
    • 1996
  • This note considers the $H^{\infty}$ controller design problem for linear systems with time-varying delays in states. We obtain sufficient conditions for the existence of k-th order $H^{\infty}$ controllers in terms of three linear matrix ineualities(LMIs). These sufficient conditions are dependent on the maximum value of the time derivative of time-varying delay. Furthermore, we briefly explain how to construct such controllers from the positive definite solutions of their LMIs and give an example.e.

  • PDF

Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems (섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계)

  • Park, Ju-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

Control of a batch reactor using relay feedback (Relay Feedback을 이용한 회분식 반응기제어)

  • 이용수;이대욱;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.749-753
    • /
    • 1993
  • It is very difficult to control batch reactor with conventional linear controller due to its severe nonlinearity. To control the nonlinearity of batch reactor, we applied with relay feedback method and SOAS. The SOAS can be designed to work quite well, but it requires engineering effect and some knowledge about the process in order to get a satisfactory performance of the closed loop system For the applications to more reliable, further studies on robustness in various situations and process noises and would be required.

  • PDF

A study of ball-beam system control using genetic algorithms (유전자 알고리즘을 이용한 Ball-Beam 시스템의 제어에 관한 연구)

  • Lee, Nam-Gi;Park, Jong-Beom;Cho, Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.968-971
    • /
    • 1996
  • In this paper, feedback controller is designed for ball-beam system using genetic algorithms. A genetic algorithms are implemented for optimizing gain parameters of feedback controller. We can find optimal point in multi-dimensional search space by using genetic algorithms. Performance of controller is tested by simulation of ball-beam system.

  • PDF

State Feedback Control by Adaptive Observer for Plants with Unknown Disturbance

  • Araki, Kazutoshi;Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Makino, Tomoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.48.3-48
    • /
    • 2002
  • 1) Linear state feedback control design problem for plant with unknown deterministic disturbance is considered and a method to realize state feedback by using adaptive observer which estimates the unknown disturbance simultaneously is proposed. 2) From the viewpoint of practical application, we propose an extended adaptive observer with direct plant path from input to output, which is necessary to use the acceleration type sensors as plant output. 3) Theoretical result is confirmed by numerical simulation of 1-DOF vibration control system.

  • PDF

An LMI-based Decentralized Sliding Mode Control Design Method for Large Scale Systems (대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.651-655
    • /
    • 2005
  • In this paper, we consider the problem of designing decentralized sliding mode control laws far a class of large scale systems with mismatched uncertainties. We derive a sufficient condition far the existence of a linear switching surface in terms of a linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given LMI existence conditions. We also give an algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.