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1. INTRODUCTION 
 

Control system analysis and design problems in LTI 
systems are mainly focused on system poles rather than zeros 
since poles are related to most of the system performances as 
well as the stability. Thus properties of zeros have little 
attention in the literature. In SISO systems, it is well known 
that the left half plane zero is concerned with the overshoot [5]. 
Moreover, if the number of right half plane zero is odd, then 
the system must have the undershoot[7]. If a single pole is 
placed on the imaginary axis, then the system is marginally 
stable. On the other hand, the zero on the imaginary axis 
yields some difficulties. Specially, if the system has least one 
zero at the origin, it must have a diverse input for the tracking 
performance[3]. Therefore, the origin has a role as the critical 
point. 

It is also known in SISO systems that the undershoot 
problem due to the unstable zero cannot be eliminated by any 
linear feedback control since the zero position cannot be 
changed by the linear feedback. The undershoot might be 
eliminated by using a nonlinear control. For example,  Tsai 
and Li[6] have proposed a fuzzy control to eliminate the 
undershoot, where most part of the undershoot in the transient 
response looks like time delay. But this control law cannot 
guarantee the stability of the closed-loop system. 

The system design problem for the frequency response is 
very interested in the MIMO system. Because, we can get the 
robustness and the worst case performance from frequency 
characteristics. However, it has been less investigated about 
the zero properties in MIMO system. Therefore, this paper 
deals with the system's zeros and the nonminimum phase 
behaviour of the MIMO system. 

The typical example of the nonminimum phase MIMO 

system with the undershoot phenomenon is the human body. 
When we want to go forward, if our foots only go forward, 
then our body must drop to backward direction, which means 
the nonminimum phase characteristic. But we can walk 
forward without backward steps, because our body is a 
multivariable system with a number of inputs for canceling the 
undershoot characteristics. 

This paper is organized as follows: First, the undershoot 
phenomenon is exemplified using an inverted pendulum in the 
next section. Section 3 deals with some definitions of zeros in 
the MIMO systems. And Section 4 shows two examples of 
MIMO systems with nonminimum phase zeros for the 
undershoot compensation. One case is shown to be able to 
eliminate the undershoot by a feedback, but another case is not. 
The last section gives some conclusions and further works. 

 
 
 

2. PRELIMINARIES AND NONMINIMUM PHASE 
CASE EXAMPLE 

 
It is well known that if an LTI SISO system has odd 

number of nonminimum phase zeros then it must have 
undershoot regardless of any linear feedback. As an popular 
example, the inverted pendulum can not go forward without 
undershoot. 

 
 

Example 1 (Inverted Pendulum): 
 
Fig. 1 is description of the inverted pendulum [1]. 

Intuitionally, as shown in this figure, if the cart go to the 
forward direction, the rod must be falling backward.  
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Fig. 1 Inverted Pendulum 

 
 
In the above figure, let 10=M , 1=m , 2=l  and 
acceleration of gravity 8.9=g , then our linearized model is 
as follows: 
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This system has a transmission zero at 2.213 in complex plane. 
In order to improve the tracking performance, an integral 
action of the error signal is added to a feedback control system 
as follow[2]: 

 
 

yre −=&                (3) 
 
 

Then the structure of the control system can be described by 
Fig. 2. 
 

 

 
Fig. 2  LQ Tracking Control Scheme with 

Integration 

 
If we take a quadratic cost function of these control scheme 
for the tracking performance 
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then it is a typical LQR problem, and we can easily compute 
the control gain. The detailed structure can be described as 
follows: 
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In the case of IQe = , 510−=R  and 
xQ  must to be the zero 

matrix for the tracking performance, the control result is 
shown in Fig. 3. 
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Fig. 3  The Result of the Control 

 
Where the unit is normalized. This system shows an 
undershoot, and it cannot be eliminated by the feedback 
control, which is widely known in SISO system. However, in 
MIMO systems some nonminimum phase effects can be 
eliminated and thus can avoid the undershoot phenomenon. 
Next section is to deal with the property of the nonminimum 
phase multivariable system using definition of the row and 
column blocking zero. 

 
 
 
3. BLOCKING AND TRANSMISSION ZEROS 
 
In linear multivariable systems, the eigenvalues of the 

system matrix are to be poles, which is exactly same as in 
SISO systems. But the definition of zeros is not unique, but 
there are several definitions of zeros, for example, 
transmission zero, invariant zero, decoupling zero, system 
zero, blocking zero, fixed zero, and so on. Below definition is 
of the blocking zero by Ferreira and Bhattacharyya[10]. 

 
 
 

Definition 1 (Blocking zero)[10]: 
 
The unique monic polynomial )(sβ  which is the greatest 

common divisor(gcd) of the numerators of the elements of 
)(sG  is called the blocking polynomial of )(sG . The roots of 
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0)( =sβ  , counting multiplicities, are called the blocking 
zeros of )(sG . 

 
 
In other words, it is said to be the blocking zero that the 

complex value makes the transfer function matrix a zero 
matrix. Therefore, all outputs are to be blocked at the 
frequency of the blocking zero. In many cases of the control 
problems, all outputs do not require the perfect tracking 
performance in the multivariable system. For example, one 
output requires the tracking performance and another requires 
only the stability. Sometimes the next definition is effective.  

 
 
 

Definition 2 (Row and Column Blocking Zero):  
 

Let a transfer function matrix )()( sRsG nm×∈  be given. It 
is said to be the ith row blocking zero that makes the ith row 
vector of )(sG  the zero row vector, where mi ≤≤1 . And 
similarly, jth column blocking zero makes the jth column 
vector of )(sG  the zero column vector, where nj ≤≤1 . 

 
 
 

Assume that a transfer function matrix )()( sRsG nm×∈  has 
not any pole-zero cancelation in the right half plane. If the 
system has an odd number of row blocking zeros in the right 
half plane, then any controller cannot be designed to eliminate 
the undershoot phenomenon. It must have a type A 
undershoot[11]. However, if the ith row of the transfer 
function matrix has no row blocking zero in the right half 
plane, then the undershoot of the ith output can be avoided 
even though there are other unstable blocking zeros in the 
system.  

This property can be explained by the following block 
diagrams. If the subsystems )(1 sG j , nj ≤≤1  have any 
common elements, then the block diagram can be redrawn as 
Fig. 6 by using )('1 sG , where )('1 sG  is the common element 
of )(1 sG j , nj ≤≤1 . Note that the zeros of )('1 sG  is the 
blocking zeros. 

 
 

 

Fig. 4  One output of a MIMO system 

 
 

 

 

 

Fig. 5  Tied block of the common elements 

 
 
If )('1 sG has nonminimum phase zeros in )('1 sG , it is 

impossible to avoid the undershoot phenomenon, which can be 
easily checked by the initial value theorem in the odd number 
case of the nonminimum phase zeros. 

 
 
 

Definition 3 (Transmission zero)[8]:  
 
Let )()( sRsG nm×∈  be a rational transfer-function matrix 

with Smith-McMillan form )(sM , and define the zero 
polynomial )()()( 1 sssz rεε L= . Then roots of )(sz  are 
called the transmission zeros of )(sG . 

 
 
 

It is noted that the blocking zero is defined as zeros of the first 
factor )(1 sε  of the zero polynomial )(sG . If an MIMO 
system has no blocking zero among transmission zeros in the 
right half plane, then it is possible to avoid the undershoot 
problem by a linear feedback, which will be shown via some 
examples in the next section. 

 
 
 

4. UNDERSHOOT PHENOMENA IN MIMO 
SYSTEMS WITH UNSTABLE ZEROS 

 
Following examples is an case of the tracking control 

problem having nonminimum phase transmission zero. 
 
 
 

 
Fig. 6  2×2 multivariable system 
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Example 2 (Transmission zero case): 

 
Let us consider a 2×2 MIMO system as shown in Fig. 6. 

The constructed LQ outputs and states feedback control 
system is shown Fig. 2, where sizes of A , B , C , IK , RK , 
x , r , y , u  and e  are each 8×8, 8×2, 2×8, 2×2, 2×8, 2, 2, 
2 and 2, respectively. n Fig. 6, it is assumed that 11G  is the 
linearized model of the inverted pendulum in Section 2 and 
that other subsystems are defined as follows: 
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Unstable transmission zeros of the system are each 2.274 

and 0.905. The control result of the system using LQ control 
in Section 3 is as shown in Fig. 7. Design parameters are used 
as follows: 
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Where xQ  is a 8×8 zero matrix and Q  is a block diagonal 
matrix of the xQ  and eQ . 
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Fig. 7  Control Result including Nonminimum 
Phase Transmission Zeros 

The overall system containing controller has still 
nonminimum phase transmission zeros. Nevertheless, first 
output graph has not undershoot phenomenon, that is, its 
unstable row blocking zeros in the plant are avoided. Where 
each elements of the overall transfer function )(sF  and the 
control gains are as follows: 
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Example 3 (Row blocking zero case): 

 
Assume that the transfer function matrix of the MIMO 

system of Fig. 6 is given as follows: 
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This system has two unstable transmission zeros at 3.31 and 1. 
Moreover, there is an unstable blocking zero at 1. Following 
figure is the control result. 
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Fig. 8  Simulation result with the blocking zero 

 
 
We can check the undershoot in this result. This system may 
have always undershoot using any design parameters, if 
tracking performance is kept. Where each elements of the 
overall transfer function )(sF  and the control gains are 
follows: 
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Now, let us assume the nonminimum phase zero of the 

)(12 sG  is changed as 0.5. Then the result is as following 
figure. 
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Fig. 9  Simulation result excluding the undershoot 

 
 

Where each elements of the overall transfer function )(sF  
and the control gains are as follows: 
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Even though the control effort looks very high, the result 
shows that the undershoot phenomenon could be avoided. 

 
 
 
5. CONCLUSIONS AND FURTHER WORKS 

 
Sometimes, the control system designers want to have 
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neither undershoot nor overshoot in the control system 
designed. The undershoot problems are considerably 
investigated in SISO systems, and it is known to be 
unavoidable by any linear feedback control. This paper deals 
with the undershoot compensation problem in MIMO systems 
and proposes some examples to avoid the undershoot problem 
by a linear feedback, which says that it is possible to solve the 
problem in MIMO systems. However, it requires further 
works to get a rigorous result via some complete analyses. 
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