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Abstract: In this paper, we consider a robust output feedback model predictive controller(MPC) design for Wiener model.

Nonlinearities that couldn’t be represented in static nonlinearity block of Wiener model are regarded as uncertainties in linear

block. An dynamic output feedback controller design method is presented for Wiener MPC. According to MPC algorithm, the

control law is computed based on linear matrix inequality(LMI)at each sampling time by solving convex optimization. Also, a

new parameter dependent Lyapunov function is proposed to get a less conservative condition. The results are illustrated with

numerical example.
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1. Introduction

There are very few design techniques that can be proven to

stabilize processes in the presence of nonlinearities and con-

straints. Wiener model is a representative model to treat the

nonlinearities of a process without complications associated

with general nonlinear operators. Wiener model consists of a

dynamic linear block followed in series by a static nonlinear

element and it adequately represent many of the nonlineari-

ties commonly encountered in industrial processes[3]. There

are several techniques to remove nonlinearity from the con-

trol problem. Norquay developed a relaxed method by in-

verting the static nonlinearity so that Wiener model could

have been incorporated into model predictive control(MPC)

scheme[3]. Bloemen presented another Wiener MPC by

transforming the static nonlinearities into polytopic uncer-

tainty descriptions[7]. These Wiener MPC algorithms are

considered based on state feedback or state observer based

output feedback. Moreover, there can be inseparable non-

linearities in the linear block i.e., we couldn’t always express

the all nonlinearities in a block following the linear block in

series.

Since model predictive control can easily handle time vary-

ing system with input and output constraints, it is a popu-

lar technique for the slow dynamical system[1]. In standard

MPC algorithm, the optimal control input is computed at

each time instance by solving optimization problem over a

fixed time horizon[1]. MPC uses estimated state based on

approximation of model, which is not a real model, to cal-

culate the optimal cost. Thus it is important for MPC to

be robust to model uncertainty. Robust constrained MPC

based on state feedback has been studied[1]. Also output

feedback based robust constrained MPC has been developed

but the control law is state observer based form[2]. A dy-

namic output feedback controller has been introduced for

MPC using a common Lyapunov function based on linear

matrix inequality(LMI) without concerning uncertainties[4].

In this paper, we introduce a dynamic output feedback con-

troller for Wiener model and present robust constrained

MPC using parameter dependent Lyapunove function.

This paper organized as follows. In section 2, we present

Wiener model whose linear block is described in structured

uncertain model and formulate the constrained MPC. In sec-

tion 3, we derive the LMI conditions using parameter depen-

dent Lyapunov function to solve the optimization problem.

Also the dynamic output feedback controller is implemented

using the variables from the result of LMI optimization. In

section 4, a numerical example is presented to illustrate the

design scheme. Finally, in section 5, we conclude this paper.

2. Problem statement
2.1. The development of Wiener model

A Wiener system illustrated in Fig 1 consists of the series

connection of a dynamic linear system and a static nonlin-

earity.

Fig. 1. Block Diagram of Wiener model

The linear block contains uncertainty in feedback loop and

it can be represented by:

x(k + 1) = Ax(k) + B1p(k) + B2u(k)

q(k) = C1x(k) + D11p(k)

y(k) = C2x(k) + D21p(k) + D22u(k) (1)

p(k) = ∆(θ(k))q(k)

z(k) = h(y(k))

where x(k)∈ Rn is the state of the plant, u(k)∈ Rm is the

control input and y(k)∈ Rp is the output of the linear block
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respectively. h(·) is the nonlinear mapping from y(k) to z(k)

and z(k) is the output of the nonlinear block.

The nonlinearity of the Wiener model is transformed into a

polytopic uncertainty description. Without loss of generality

assume that h1 . . . hp are polynomials. The nonlinearity can

be written as:

z(k) = h(y(k)) = H(y)y(k)

where

H(y) ∈ Ω = Co{H1, . . . , H2p}
= Σ2p

i=1αiHi (2)

Σiαi = 1

in which H(y) is a diagonal matrix because of the special

structure of the nonlinearity. When the operating region

for y(k) is limited the entries of H(y) are bounded by mini-

mum and maximum values. All the possible combinations

of the maximum and minimum values of the element of

H(y) are used to generate 2p vertices Co{H1, . . . , H2p} of the

polytopic description Ω which contains the nonlinear matrix

H(y).

(Co refers to the convex hull).

The operator ∆ is block-diagonal:

∆ =




∆1

∆2

. . .

∆r




(3)

with ∆i:R
ni → Rni . ∆ can represent either a memory-

less time-varying matrix with ‖ ∆i(k) ‖2 ≡ σ̄(∆i(k))≤1,

i=1,2,· · · ,r, k≥0 or a convolution operator (e.g. a stable

LTI dynamical system), with the operator norm induced by

the truncated L2-norm less than 1, i.e.,

∑k
j=0 pi(j)

T pi(j) ≤
k∑

j=0

qi(j)
T qi(j) (4)

i = 1, · · · , ri, ∀k ≥ 0

2.2. Dynamic controller design

We want to find a control law at each time, k, for the system

(1) with following representation:

xc(k + 1) = Acxc(k) + Bcz(k)

u(k) = Ccxc(k) (5)

where xc(k + 1) ∈ Rn and Ac, Bc, Cc are matrices of appro-

priate dimensions. The problem is redefined to the deter-

mination of the matrices Ac, Bc, Cc so that the closed-loop

system is stable. The augmented system is represented by:

x̄(k + 1) = Āx̄(k) + B̄p(k)

u(k) = Kx̄(k) (6)

q(k) = C̄ (̄x)(k) + D̄p(k)

where

Ā =

[
A B2Cc

Bc

∑
αiHiC2 Ac

]
∈ R2n×2n

B̄ =

[
B1

Bc

∑
αiHiD21

]
∈ R2n×m (7)

C̄ =
[

C1 0
]
∈ Rp×2n

D̄ = D11

K =
[

0 Cc

]

and

x̄(k) =

[
x(k)

xc(k)

]
∈ R2n (8)

To guarantee stability, we consider an infinite horizon MPC

problem[1]. The control law, at each step k, can be computed

by minimizing the objective function given by:

J∞(k) =
∑∞

i=0[x̄(k + i|k)T Q̄x̄(k + i|k)

+u(k + i|k)T Ru(k + i|k)] (9)

where

Q̄ =

[
Q 0

0 0

]
(10)

Q ≥ 0, R > 0, and x̄(k + i|k) denotes the augmented state

predicted based on the measurements at time k, x̄(k|k) =

x̄(k).

Let us consider a quadratic function:

V (x̄(k|k)) = x̄(k|k)T P (θ(k))x̄(k|k), P (θ(k)) > 0 (11)

where

P (θ(k)) =

[
I

∆a(θ(k))

]T

Pa(k)

[
I

∆a(θ(k))

]
(12)

∆a(θ(k)) = (I −∆(θ(k))D)−1∆(θ(k))C (13)

for all ∆(θ(k)) ∈ ∆. It is the parameter dependent represen-

tation and we suppose the parameter can be measured.

For the cost monotonicity, let us suppose V satisfies the fol-

lowing inequality for all x(k + i|k), u(k + i|k), i ≥ 0:

V (k + j + 1|k)− V (k + j|k) <

−[x(k + j|k)T Q̄ + u(k + j|k)T Ru(k + j|k)] (14)

By summing (14) from i = 0 to i = ∞, we obtain:

−V (x(k|k)) ≤ −J∞(k) (15)

that means the quadratic function, V , can be an upper

bound for the objective function (9). Thus our goal is re-

defined to the minimization of (11).
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3. Main result
Theorem 1 : Consider the system (1) at time instant k.

The dynamic output feedback control law (2) that minimize

J∞(k) can be solved by the following semi-definite program-

ming :

min Tr(Pa) (16)

subject to

(17)

Proof :

By substituting (6) and (12) into (14), we could obtain:

(18)

where

x̄ = x̄(k + j|k), p = ∆a(k)x̄(k + j|k),

w = ∆a(k + 1)x̄(k + j + 1|k) (19)

K = [0 Cc] Q̄ =

[
Q 0

0 0

]

This inequality holds for all nonzero vector
[

x̄ ; p ; w ;
]

satisfying

wT w = (Āx̄ + B̄p)T ∆T
a (k + 1)∆a(k + 1)(Āx̄ + B̄p)

= (C̄Āx̄ + C̄B̄p + D̄w)T ∆T ∆(C̄Āx̄ + C̄B̄p + D̄w)

≤ (C̄Āx̄ + C̄B̄p + D̄w)T (C̄Āx̄ + C̄B̄p + D̄w) (20)

Remark 1 : w denotes p(k+j+1|k). By considering p(k+j|k)

and p(k+j+1|k) together, we can take the rate bound of the

uncertainty into account and it derives the less conservative

condition.

Using S-procedure, it is easy to see that inequality (18) and

constraint (20) are satisfied if

[
AT PaA− Pa + W AT PaB

BT PaA BPaB − Λ−1

]

+

[
CT

DT

]
Λ−1

[
C D

]
< 0 (21)

where

A =

[
Ā B̄

0 0

]
B =

[
0

I

]

C =
(

CA CB
)

D = D̄ (22)

W =

[
Q̄ + KT RK 0

0 0

]

Λ = τI

By Congruence transformation with diag{I, Λ, I, I} after

Schur’s complement, (26) is equivalent to:




−Pa + W ∗ ∗ ∗
0 −Λ−1 ∗ ∗
A BΛ −Qa ∗
C DΛ 0 −Λ


 < 0 (23)

where

Qa = P−1
a (24)

Let us partition matrices Qa and Pa in the form:

Qa =




X U 0

UT X̂ 0

0 0 Z


 Pa =




Y V 0

V T Ŷ 0

0 0 Z−1


 (25)

and define the matrices:

T1 =




X I 0

UT 0 0

0 0 I


 T2 =




Y I 0

V T 0 0

0 0 I


 (26)

By pre-multiplying by T T and post-multiplying by T, with :

T =




T1 0 0 0

0 I 0 0

0 0 T2 0

0 0 0 I


 (27)
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we obtain:




−T T
1 PaT + T T

1 WT ∗ ∗ ∗
0 −Λ ∗ ∗

T T
2 AT1 T T

2 BΛ −T T
2 QaT2 ∗

CT1 DΛ 0 −Λ


 < 0 (28)

By Substituting (7),(22),(25) and (26) into (28), we obtain

(17) where:

F = V Bc

L = CcU
T (29)

G = Y AX + F
∑

αiHiC2X + Y B2L + V ACUT

By solving (17), we obtain the value of variables X,Y,Z,F,L

and G. Therefore the controller is given by:

V = (I − Y X)(UT )−1

Bc = V −1F

Cc = L(UT )−1

Ac = V −1Ḡ(UT )−1 (30)

where Ḡ = G− Y AX − F
∑

αiHiC2X − Y B2L.

4. Numerical example
Consider angular positioning system described in Fig2.

Fig. 2. Angular position system

It consists of the linear block described by:

x(k + 1) =

[
θ(k + 1)

θ̇(k + 1)

]

=

[
1 0.1

0 1− 0.1α(k)

]
x(k) +

[
0

0.08

]
u(k)

≡ A(k)x(k) + B(k)u(k) (31)

and nonlinearity in the output, that is polytope with known

bounds:

0.5 ≤ H ≤ 1.5 (32)

α(k) is a nonlinearity expressed by sine function, which can-

not be separated from linear block. Regarding it as an un-

certainty, the system can be interpreted as a structured un-

certain model by :

A =

[
1 0.1

0 0.495

]
B1 =

[
0

0.08

]
B2 =

[
0

−0.1

]

C1 =
[

0 0.495
]

C2 =
[

1 0
]

D11 = 0 D21 = 0

Q =

[
20 0

0 20

]
R = 0.1 (33)

with the initial condition x(0) = [0.05 0]T , xc(0) = [0 0]T

Fig.3 shows the output and the control trajectory of the con-

strained MPC. The dashed line is the result of a MPC using

a common Lyapunov function presented in [4] and the solid

line shows the case of using the parameter dependent Lya-

punov function presented above. Compared to the case of

common Lyapunov function, the improved result can be ob-

tain by the parameter dependent Lyapunov function.

Fig. 3. Closed-loop response for the Wiener model: solid

lines shows the case of parameter dependent Lyapunov

function ; dashed lines shows the case of a common Lya-

punov function

5. Conclusion
We have constructed a dynamic output feedback controller

for Wiener model composed of dynamic linear block ,static

nonlinear block and another nonlinearity which couldn’t

have been apart from linear block. That nonlinearity has

been considered as an uncertainty in the linear block. The

MPC algorithm have been adopted to control the entire

Wiener model. Also, we have proposed the parameter de-

pendent Lyapunov function. LMI technique has been used

to solve the optimization problem. A numerical example has

been represented performance of the parameter dependent

Lyapunov function and the result has shown rather improved

closed-loop response than the case of a common Lyapunove

function.
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