KSME International Journal, Vol. 14 No. 1, pp. 57 ~ 64, 2000 57

Active Vibration Control of a Structure with Output Feedback
Based on Simultaneous Optimization Design Method

Young-Bok Kim*
(Pukyong National University)

Recent advances in the field of control theory have enabled us to design active vibration
control systems for various structures. In many studies, the controller used to suppress vibration
has been synthesized for the given mathematical model of structure. In these cases, the designer
has not been able to utilize the degree of freedom to adjust the structural parameters of the
control object. To overcome this problem, so called “Structure/Control Simultaneous Optimiza-
tion Method” is used. In this context of view, this paper is concerned with the active vibration
control of bridge towers, platforms and ocean vehicles etc. Simultaneous design method is used
to achieve optimal system performance. Here, a general framework for the simultaneous design
problem of output feedback case is introduced based on LMI (Linear Matrix Inequality). The
simulation results show that the proposed design method achieves desirable control perfor-

mance.

Key Words : Active Vibration Control, Structural Parameter, Simultaneous Optimization,
Output Feedback, Linear Matrix Inequality, Control Performance

1. Introduction

System design practice has become more inter-
disciplinary. This has been caused by increasingly
demanding performance criteria and design speci-
fications of all types of machines and structures in
various fields. Passive control alone may not meet
the high specifications. On the other hand, pure
active control which has been applied to various
control problems(Shin et al.,, 1996 ; Oh et al,,
1998 ; Park et al., 1998) may be very expensive to
realize. This has led researchers to integrate the
passive and active control design in a certain
optimal sense to satisfy the high demanding per-
formance requirements(Iwatsube et al. 1993 ;
Onoda, 1995 ; Obinata, 1997 ; Shi and Skelton,
1996 ; Tanaka and Sugie, 1998).

The modeling and control problems are not
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independent. The structure design and control
design are not separable and necessarily are iter-
ative. This paper introduces an iterative algorithm
to integrate structure and control design. Specifi-
cally, the algorithm simultaneously finds: i) the
optimal values of the stiffness, damping ratios,
and actuator location parameters, and ii) an
optimal stabilizing state feedback and output
feedback controller such that the active control
energy is minimized subject to: a) the pre-
specified RMS constraints on the outputs, and b)
the constraints on the structure parameters. The
algorithm provides a systematic approach to tune
the structure parameters and design an active
controller. This algorithm is applied to vibration
control system design for a structure. It can be
easily extended to anti-roll control system design
problems of ocean vehicles, platforms, etc.

2. Problem Formulation
Consider a linear time-invariant dynamic

model for a structure illustrated in Fig. 1 with the
following representation:
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Fig. 1 Schematic diagram of a controlled structure
Mg+D(a) ¢ +K(Bag=brw+b()u

a=u, 2=Clg 417 y=2 (1)
where, g=R™ is the displacement vector, 4 and
g are the velocity and acceleration vectors,
respectively. And, y&R™ is the control input
vector, z;=R™ and z&R" are the output
vectors to be regulated, y=R™ is the vector of
measurements, & R™ is the disturbance input.

D(a)=D+AD(a)=D+§dla,~Df
K(B)=K+AK(,8):K+JZ:IBJ-KJ- @)

bz(a)=b2+4bz(a)=bz+§blalbz

where, g=[m @ -+ as] is the set of system
parameters that can be designed to adjust the
system damping, 8=[4, B --- B] is the set of
system parameters that can be designed to adjust
the system stiffness, §=[8 & -
of actuator and location parameters, matrices D;,

- 8] is the vector

K; and b, are the corresponding basis matrices.
The matrices M, D, K, b1, b, and C are constant
matrices with appropriate dimensions that repre-
sent the nominal structure design. Also

a<la, al, B[S B]
where, ¢, @, § and B are specified constants that
represent the structure design constraints. Define
p=[a B]. The state space representation for
the dynamic system (1) is given by

=AW x+bw+b(Su

z=u (3)

22=Cx
where,

x=[".], Alp)=A+JA(p)

q

— 0 In,
A‘[—M—lK ~M~1D]
0 0

BAD=| g aap)

Bz(a) :Bz+ABz(5)

BZZ[M(‘)‘bg]’ 4B:(3) :[M”lé(l)bz(a)]

0
B~y
p:[al’ s g B e Bk]
2_—:[21, - Qas ﬁl’ e ﬁk]
p:[ﬁl’ ey T B_l’ .o, Ek]'

Here, the system matrix A (p) is a linear func-
tion of p. The matrices A, By, B, C are real
constant with appropriate dimensions, and /
means the variation around the nominal value.
We shall make the following assumptions for the
system (3).

Assumptions : For any

p<lp 7] and 6€[8 6],

(i) The pair [A(p), B:(8)] is stabilizable,
(ii) The pair [ A(p), B:] is stabilizable.

3. H. Performance Objective of State
Feedback Case

Consider a LTI system described by

x =Ax+Blw+Bzu
2= Cix+Duw+ Duu 4)
2= sz+D21w+Dzzu

where, x, w, u, z1 and z, take values in finite
dimensional vector spaces : x&R», w&R", y&
R™, z=RP and z =R The system parameters A4,
Bi, B, Ci, Cs, Di1, Dig, Dy and D,, are matrices
of appropriate dimensions. Based on these
assumptions, the H,, performance objective of the
state feedback case is defined as follows. For the
system (4), given a performance

" Tzw"w< 7 7’>0

find a state feedback controller 3 = Gx such that
the closed~loop system is asymptotically stable,
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where z=[2{ 2{] and | 7}, denotes co-norm of

T=» Which is the transfer function from g to z.
The closed loop system is represented by

x= (A+BzG)x+B1w
2= (Ci+DpG) x + Duw (5)
2= (Cz+DnG)x + Dnw-

Lemma 1(Gahinet and Apkarian, 1994; Goh
and Papavassilopoulos, 1994; Boyd and Ghaoui,
1993): Using Schur complement, the following
inequality can be obtained as H., constraint of the
closed-loop system (5), for X.,>0,

(A+B.G) X+ X (A+B:G)T B

Bf -l
(Ci+ DG X Dy
Xo(CiH+DpG)T
D <0 (6)
— o

Then the H,, constraint control problem is to
find a controller = Gx such that it minimizes

4. LMI Based H. Control with
Output Feedback

In this section, we give the formulation of LMI
based output feedback control in detail. So that
the result to be introduced in this section is
natural extension of the state feedback case. Here,
the objective is to make clear this formulation for
practical use.

Let us consider the system (4) and a proper
real rational controller represented by

¥c=Acxc+ Bey (7
u=Cexc+ Dey-

Lemma 2(Gahinet and Apkarian, 1994 ; Goh
and Papavassilopoulos, 1994 ; Boyd and Ghaoui,
1993) : The system (4) is stabilizable with H,,
disturbance attenuation y via output feedback
(7) if and only if there exist symmetric matrices R
and S satisfying the following LMI system:

AR+RAT RCI | B,

0
[NR O] ! CiR - Dy [ER—\»] <0
I 0|7

B1T D1T1 ‘ - )’I

AS+SAT SBI | CT
0
[Ns O]T B.R o DI [Ns ]<0
ol 7 0 |7
G Du ‘_71
RO
[0 5/2° ®

where, N and N; denote bases of the null spaces
of (BY, D%) and (C,, Ds), respectively. In addi-
tion, there exist such controllers of order k<#
(reduced order), if and only if the above three
LMIs hold for some R and S that further satisfy
rank (] — RS) <k. )
Suppose that some solution (R, S) of the LMI
systems (8) and (9) has been computed. We
propose a method to construct an H,, controller
from the obtained data. Here, we collect the
controller parameters into a single variable &

which is to be used in the next formulation.
Ez[A” BC]. (10)

Ce D

The matrices of closed-loop system are

obtained by
Aq=Ao+BEC, Bu=By+BED,  (11)
Co=Co+ DleC, De=Do+ D125ﬁ21

where,
ar[20) 5[] amrc

5] o=[(, ) pmto

1521:[ 0 ] (12)

From the state-space realization of the plant
and controller, let
x cl:AcIXCZ + Bclw
21= CenXei+ Denw (13)
2= Cepxa+ Denw

_[& _ Ccll} :[Dcll]
z [Zz:l’ CCZ [Cclz ’ DCl Dch

be the corresponding closed-loop state-space
equations.

We are now in the position to state the proce-
dure.

[ H.. Controller Construction Procedure]

1. Compute two full-column-rank matrices
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N, NeR™X gatisfying

MNT=I—-KS. (14)
2. Solve the following linear equation about
X
NA I R
[or o]=xatg K] (15)

3. Solve the matrix inequality
AbXat+ XaAa XaBa Ch

BiXe —yl D}
Ce Dcz - 7.[
A()TXcl+Xcl140 XclBO COT
= BiX. —yl Df
Co Do - 7]
CT
+| DA |ET[B™X« 0 Dh]
0
cr !
+1| DA |ET[B™X. 0 D]} <0 (16)
0

for the matrix variable 5. Then, the matrices A.,
B., C.and ], are obtained from the solution 5.

This procedure will be applied to compute H,,
output feedback controller for simultaneous

optimization design problem.

5. The Algorithm to Integrate Struc-
ture and Control System Design Based
on Optimization Design Method

Here, our problem of finding a solution to
inequality (16) can be embedded in the parametr-
ized family of problems :

Q(Xew ps ve(8, B), ) >0 (N

where, v.(8, £) denotes the function of actuator
parameter and dynamic controller.

At first, we consider the following subprob-
lems.

51 (X., p)-Optimization

Here, we consider the optimal selection of the
structure parameter p.

Suppose the solution of inequality (16), (X,
D> Yen (85 E), 7n) is given for the nominal system
(4), and let the matrix y., (8, Z) be fixed. Then
we consider the following Matrix Inequality.

AL(D) Xen+ XenAci(p) XewmBea Ch

BchXcln _71 DcTz <0 (18)
Cu Dy _71
Theorem 1 : Suppose the actuator parameter

and dynamic controller y,, (8, =) is given for the
nominal system. Then the (X, p)-Optimization
problem is represented as follows:
min vy,
(Xev D0 7)
subject to Inequality (18), (19)
p<p<p
The optimal solution is denoted as ( X n11Pn+15
¥a+1)- Such that the sub-optimal dynamic con-
troller and actuator parameters are determined
from ycn(87 5), yield V1= Yn

52 (X ve(8, =))-Optimization

Here, we consider the selection for the actuator
location parameter § and dynamic controller
parameter 5.

Suppose the solution of the (X, p)-Design
Loop, 0P, (Xewmupnss 7ae1) is given for the
system with a fixed vy, (8, =). Then the problem
of (X y.(8, £))-Optimization is to find a new
controller subject to H,, constraints. This problem
can be formulated as follows.

Theorem 2 : Let the solution (Xipi1, Pris
¥n+1) to the (X, p)-Design Loop be given. Then
the (Xcla yc(é\’

follows:

5))-Optimization is given as

min y,
(Xen ¥:(8, B, )
subject to
AL (ve) Xat XerAa (ye) XaBe(ye) Ch(ye)
Bl (ye) Xe -y Da(ye) |<0
Ccl (yc) Dcl (yc) - 71

5<8< 8. (20)

The optimal solution is denoted as (Xcini0
Yen+1(8s E)» ¥na2). Then vy, < ypyn.

This problem gives the optimal (in general
suboptimal) value for the parameter § and new
controller =, satisfying the H, constraint. Now,
an algorithm is given to integrate structure and
control system design. The basic idea is to iterate
the (X, p)-Optimization and the (X, v.(6,
Z))-Optimization Loop.
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Algorithm : Consider the system (4), and set
po=0, 8§=0, »=0. Suppose that = is given for
the nominal system with the numerical tolerance
e>0.

Step 1 : Solve the (X, p)-Design Loop
with a fixed y., (5 5) to get
(Xcln+1pn+1’ 7n+1)-

Step 2 : Solve the (X v.(5 Z))-Optimiza-
tion problem to get
(Xetnr2 Yerns1(8 &) ¥ns2) -

Step 3 : If |yne1— 7nie > 80 to Step |,
otherwise, output
(Xetnr2 Dn+1s )’cn+1(a’ ), 7’n+2)-

Step 4 : The actuator and controller parame-
ters are obtained as follows .

V1 (& &)
6. Simulation

The model of the design object shown in Fig. 1
is considered. The equation of motion for this
system is given by

my (%1+ C'Z):_Clxl_klxl_c‘z(xl_xz)
— ko {21~ x2)
me (it d) =—f—c(d2— %) — ke (xe—2x1) (21)
—c3{X2— %3)
ms (%3t d)=f—cs(da— %2)
where, m;, c;(i=1, 2, 3) and k;(j=1, 2) are
mass, damping and stiffness, respectively. Espe-
cially, m; is active mass to suppress the vibration.
And x; denotes the state displacement. If we let

Xa=x1+ds X2a=2%2+d, x3a=x3+d, f=kru

Table 1 Estimated parameters

Parameters Values Unit
Mass o 150.30 kg
s 116.50 kg
mas| to be designed kg
Damping coef. ¢ 29.12 N/ (m/s)
C2 14.22 N/ {(m/s)
Cs 11.33 N/{(m/s)
Stiffness coef. ki 28,812.00 N/m
ko 25,855.00 N/m
221)22 tor torque b to be designed N/A

then the Eq. (21) is represented by

my K1a=— (14 ¢2) Xratco Xoa— (b1t k2) x14
+k2X2d+Cld. +k1d

My X2a=C1 X1a— (C2FC3) Xoat s Xza  (22)
+ke Xrat+koxea—kru

My ¥3a=Cs ¥2a—Cs X3at+hrut

where, ;7 and 4 denote the torque constant and
control input, respectively. And consider

Xsa= X 1d> Xoa= X2d> X6a= X 3d (23)
then, the system description is given by

=AW x+B:(8)u+Eid+Ed

a=u (24)
2=C x

where,
X = I:X1d Xod X3d Xaa Xsd xed] T (25)

In this paper, it is assumed that the passive
parameter p{mu, mg b and k) is fixed. Then,
optimization parameters are §(ms, kr) and =
(controller parameter). And the system matrices
of (24) are represented by

0 0 0
0 0 0
A(®)= ° o0
)_ —(k1+k2)/n11 kz/?’)’ll 0
kz/ﬁ’lz —kz/WLZ 0
i 0 0 0
1 0 0 ]
0 1 0
0 0 1
—(atc)/m c/ my 0
cof me —(catca)/mz cs/ma
0 Ca/WL:; —03/m3_
B:(6) :[0 000 —kr/mo kr/"%]r
E=[000 ¢/m; 00]7 (26)
E2:|:000 kl/ml OOJT
100000
_[0 1000 0]
Suppose
d
B=(E: B w=| 4] @7)

then, (24) is represented as follows :
2=A8)x+Biw+B:(0)u
21=U (28)
2=Cx.
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Suppose we have freedom to redesign the val- 2,645x10  2.223x10  8.508 ]
ues for the active mass 3 and torque constant k. —6.903 —1.005x10 —6.907
That is, the actuator redesign parameters are 1.766 1.075x 10 —4.881

S1=Frr So= s 4598x 10 4.866x10 2278
i . ) 3.465x 1072 —1.644 x 107! —4.339
.The constraint on the redesign parameter is 276010 2381x10  8.465
given by ~ [ —5.653% 10 —6.911x107]
8:=0.1, §;=0c0, 7=1, 2. 4.167x10  5.095X 1072

The algorithm of section 5 gives the optimal —7.252x 10 —8.868x 1072
variation of §(kr, m;) with the parameter (> Be= —1.049 x 102 —1.283x 10|’
0), which is illustrated in (a) of Fig. 2. And the —1.080 —1.313x1073
control performance index y in each iteration is | —6.336 X 10 —7.746 102
plotted in (b) of Fig. 2. From this result, the [ 6.504x10¢ ]
parameter k;=1.8, m;=2.2 for optimal values —1.016x 1077
are chosen. Where y=0.0086. —4.737x 1078

The controller parameter is given by Ce= L 5.418x 1077 |

. TAcB. 7.963x 1077
= :[ C, Dj | —7.465x 1078 |
where

[ 1.008x 102 1.562% 10?7 5.556x 10
4457 —6.621x10 —2.720
6239x10  6.615x10  2.848
—2.572x 107 3.405x 102 1.290
3.767 1475  —3.48
| -1.016X 102 1.665x 10 5.998

Ac:

Fig. 3 Impulse responses (uncontrolled cases)

(b)

Fig. 2 Performances with redesign process (kr, ms, 7 Fig. 4 Impulse responses (controlled cases) (Simul
and iteration index) taneous optimization control)
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Fig. 6 Frequency responses (controlled cases)

De=[—2.200

The impulse responses of the open-loop struc-

—1.100x 10%].

ture is shown in Fig. 3. Figure 4 denotes the
impulse responses of the closed-loop system as-
sociated with the redesigned closed-loop struc-
ture and the controller. The frequency responses
of the systems with control and without control
are shown in Figs. 5 and 6.

7. Concluding Remarks

In this paper, an algorithm for integrating
structure and control system design of output
feedback case is proposed. The optimization
problem is divided into two subproblems with
iteration between the two. The first subproblem
gives the optimal values for the structure passive
parameters. The second subproblem gives the
optimal values for the actuator location parame-
ters and the controller with the constraints. This
approach has been applied to the vibration con-

trol of a structure. In practice, it is clear that this
approach is very useful to the control system
design because the high demanding performance
requirements can be achieved.
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