• 제목/요약/키워드: Linear feedback control systems

검색결과 553건 처리시간 0.026초

상태 변환을 이용한 선형 시변 시스템에 대한 강건한 제어 (The robust control for a linear time-varying system using state transformation)

  • 조도현;이상효
    • 제어로봇시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 1998
  • This paper is focussed on the problem of robustly stabilizing a transformable linear time-varying system. The considered system is a class of state feedback transformable linear systems. First, the real linear time-varying system is transformed into the linear time invariant system composed with the time-invariant linear part and the time-varying uncertainty part. Second, the solution to a quadratic stabilization problem in the transformed linear system is give via' Lyapunov methods. Then this solution is used to construct a stabilizing linear control law for the real linear time-varying system.

  • PDF

LQ Regulator of Systems with Multiple Time-Delays by Memoryless Feedback

  • Kubo, Tomohiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.373-378
    • /
    • 1998
  • A method to construct a memoryless feedback law for systems with multiple time-delays in the states is proposed. As a plant model, a differential-difference equation with multiple delayed terms is introduced, A stabilizability condition by memoryless feedback is presented. A feedback gain is calculated with a solution of a finite dimensional Riccati equation. It is shown that the resulting closed loop system is asymptotically stable, and moreover, it is a linear quadratic regulator for some cost functional. An alternative stabilizability condition which is easier to check is given.

  • PDF

Decentralized Output-feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

  • Shim, Duk-Sun
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.158-162
    • /
    • 1998
  • We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H$\infty$ control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system.

  • PDF

Controller of nonlinear servo system

  • Yamane, Yuzo;Zhang, Xiajun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.342-345
    • /
    • 1996
  • This paper is dealing with a design of linear controller so that the plant output is regulated to follow a reference model output when the plant equation is described by a class of nonlinear time-varying control systems.

  • PDF

이산시간 불확정 시스템의 안정화 제어 (Stabilizing Control of Discrete-Time Uncertain Systems)

  • 이정문
    • 산업기술연구
    • /
    • 제10권
    • /
    • pp.3-8
    • /
    • 1990
  • This paper presents a linear state feedback control approach to the stabilization of discrete-time uncertain systems with bounded uncertain parameters. The approach is based on the LQ(linear quadratic) regulator theory and Lyapunov's stability analysis. Asymptotically stable behavior is guaranteed in the presence of parameter uncertainties, and the upper bound of the performance index is determined.

  • PDF

신경회로망을 이용한 리니어 펄스 모터의 정밀 제어 (Precise Control of a Linear Pulse Motor Using Neural Network)

  • 권영건;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.987-994
    • /
    • 2000
  • A Linear Pulse Motor (LPM) is a direct drive motor that has good performance in terms of accuracy, velocity and acceleration compared to the conventional rotating system with toothed belts and ball screws. However, since an LPM needs supporting devices which maintain constant air-gap and has strong nonlinearity caused by leakage magnetic flux, friction and cogging, etc., there are many difficulties in improvement on accuracy with conventional control theory. Moreover, when designing the position controller of LPM, the modeling error and load variations has not been considered. In order to compensate these components, the neural network with conventional feedback controller is introduced. This neural network of feedback error learning type changes the current commands to improve position accuracy. As a result of experiments, we observes that more accurate position control is possible compared to conventional controller.

  • PDF

원판내 고유치 배정 조건을 갖는 불확정성 선형 시스템의H_{\infty}제어기 설계 (Design of H_{\infty} Control for Uncertain Linear Systems with Eigenvalue Assignment Constraint in a Disk)

  • 마삼선;김진훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권9호
    • /
    • pp.520-525
    • /
    • 2000
  • This paper deals with the design of H$\infty$ control for uncertain linear systems with the regional eigenvalue assignment constraint. The considered region is a disk in the left half plane and the two types of time-varying uncertainties are considered. We presents a state feedback control that minimize the L2 gain from the disturbance to the measured output as well as it guarantees that all eigenvalues of closed loop are inside a disk. The state feedback control is obtained by checking the feasibility of linear matrix inequalities (LMI's) which are numerically tractable. Finally we give an example to show the applicability and usefulness of our results.

  • PDF

신경회로망을 이용한 상호 연결된 시스템의 비집중 제어와 평면 로봇 매니퓰레이터에의 응용 (Decentralized control of interconnected systems using a neuro-coordinator and an application to a planar robot manipulator)

  • 정희태;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.88-95
    • /
    • 1996
  • It is inevitable for local systems to have deviations which represent interactions and modeling errors originated from the decomposition process of a large scale system. This paper presents a decentralized control scheme for interconnected systems using local linear models and a neuro-coordinator. In the proposed method, the local system is composed of a linear model and unknown deviations caused by linearizing the subsystems around operating points or by estimating parameters of the subsystems. Because the local system has unmeasurable deviations we define a local reference model which consists of a local linear model and a neural network to estimate the deviations indirectly. The reference model is reformed into a linear model which has no deviations through a transformation of input variables and we obtain an optimum feedback control law which minimizes a local performance index. Finally, we derive a decentralized feedback control law which consists of local linear states and neural network outputs. In the decentralized control, the neuro-coordinator generates a corrective control signal to cancel the effect of deviations through backpropagation learning with the errors obtained from the differences of the local system outputs and reference model outputs. Also, the stability of local system is proved by the degree of learning of the neural network under an assumption on a neural network learning index. It is shown by computer simulations that the proposed control scheme can be applied successfully to the control of a biased two-link planar robot manipulator.

  • PDF

Angle and Position Control of Inverted Pendulum on a Cart Using Partial Feedback Linearization

  • Yeom, Dong-Hae;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1382-1386
    • /
    • 2003
  • In this paper, we propose a controller for the position of a cart and the angle of a pendulum. To achieve both purposes simultaneously, we divide the system into the dominant subsystem and the dominated one after partial feedback linearization. The proposed controller is composed of a nonlinear controller stabilizing the dominant subsystem and a linear quadratic controller. Using the proposed controller, the controllable region is increased by the nonlinear control part and the control input minimized by the linear control part (LQR).

  • PDF

Robust control of linear systems under structured nonlinear time-varying perturbations I - Analysis

  • Bambang, Riyanto-T.;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.81-87
    • /
    • 1993
  • In this paper robust stability conditions are obtained for linear dynamical systems under structured nonlinear time-varying perturbations, using absolute stability theory and the concept of dissipative systems. The conditions are expressed in terms of solutions to linear matrix inequality(LMI). Based on this result, a synthesis methodology is developed for robust feedback controllers with worst-case H$_{2}$ perforrmance via convex optimization and LMI formulation.

  • PDF