• 제목/요약/키워드: Linear constraints

Search Result 693, Processing Time 0.03 seconds

A Linear Sliding Surface Design Method for a Class of Uncertain Systems with Mismatched Uncertainties (불확실성이 매칭조건을 만족시키지 않는 선형 시스템을 위한 슬라이딩 평면 설계 방법)

  • 최한호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.861-867
    • /
    • 2003
  • We propose a sliding surface design method for linear systems with mismatched uncertainties in the state space model. In terms of LMIs, we derive a necessary and sufficient condition for the existence of a linear sliding surface such that the reduced-order equivalent sliding mode dynamics restricted to the linear sliding surface is not only stable but completely invariant to mismatched uncertainties. We give an explicit formula of all such linear switching surfaces in terms of solution matrices to the LMI existence condition. We also give a switching feedback control law, together with a design algorithm. Additionally, we give some hints for designing linear switching surfaces guaranteeing pole clustering constraints or linear quadratic performance bound constraints. Finally, we give a design example in order to show the effectiveness of the proposed methodology.

The Generalized Continuous Multiple-Choice Linear Knapsack Problem with Generalized Lower Bound Constraints (일반하한제약을 갖는 일반연속 다중선택 선형배낭문제의 해법연구)

  • 원중연
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.291-299
    • /
    • 1998
  • We present a variant for the generalized continuous multiple-choice knapsack problem[1], which additionally has the well-known generalized lower bound constraints. The presented problem is characterized by some variables which only belong to the simple upper bound constraints and the others which are partitioned into both the continuous multiple-choice constraints and the generalized lower bound constraints. By exploiting some extended structural properties, an efficient algorithm of order Ο($n^2$1og n) is developed, where n is the total number of variables. A numerical example is presented.

  • PDF

Deformable Surface 3D Reconstruction from a Single Image by Linear Programming

  • Ma, Wenjuan;Sun, Shusen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3121-3142
    • /
    • 2017
  • We present a method for 3D shape reconstruction of inextensible deformable surfaces from a single image. The key of our approach is to represent the surface as a 3D triangulated mesh and formulate the reconstruction problem as a sequence of Linear Programming (LP) problems. The LP problem consists of data constraints which are 3D-to-2D keypoint correspondences and shape constraints which are designed to retain original lengths of mesh edges. We use a closed-form method to generate an initial structure, then refine this structure by solving the LP problem iteratively. Compared with previous methods, ours neither involves smoothness constraints nor temporal consistency, which enables us to recover shapes of surfaces with various deformations from a single image. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data.

Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints

  • Yu Li;Han Qing-Long;Sun Ming-Xuan
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.397-402
    • /
    • 2005
  • The guaranteed cost control problem for a class of linear systems with norm-bounded time-varying parameter uncertainties and input constraints is considered. A sufficient condition for the existence of guaranteed cost state feedback controllers is derived via the linear matrix inequality (LMI) approach, and a design procedure to guaranteed cost controllers is given. Furthermore, a convex optimization problem is formulated to determine the optimal guaranteed cost controller. An example is given to illustrate the effectiveness of the proposed results.

IDENTIFICATION OF SINGLE VARIABLE CONTINUITY LINEAR SYSTEM WITH STABILITY CONSTRAINTS FROM SAMPLES OF INPUT-OUTPUT DATA

  • Huang, Zhao-Qing;Ao, Jian-Feng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1883-1887
    • /
    • 1991
  • Identification theory for linear discrete system has been presented by a great many reference, but research works for identification of continuous-time system are less than preceding identification. In fact, a great man), systems for engineering are continuous-time systems, hence, research for identification of continuous-time system has important meaning. This paper offers the following results: 1. Corresponding relations for the parameters of continuous-time model and discrete model may be shown, when single input-output system has general characteristic roots. 2. To do identification of single variable continuity linear system with stability constraints from samples of input-output data, it is necessary to use optimization with stability constraints. 3. Main results of this paper may be explained by a simple example.

  • PDF

Design Characteristics of Permanent Magnet Linear Synchronous Motor for Short Reciprocating Trajectory

  • Jung, Sang-Yong
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.46-53
    • /
    • 2007
  • Design characteristics of PMLSM(Permanent Magnet Linear Synchronous Motor) considering the dynamic running condition under the limited input voltage and current for short reciprocating trajectory are presented. Particularly, the dynamic constraints resulted from the dynamic capability of PMLSM and the required motional performance of the repeated short stroke are applied to determine the design specification of PMLSM. In addition, optimal design flow based on the dynamic constraints is specified with the design parameters, such as coil resistances, the EMF constants, inductances, pole-pitch. Furthermore, proposed methods and results are validated by the experimental ones measured with the purpose-built prototype.

  • PDF

Research on Design Characteristics of Steel-Cored PMLSM with High Thrust Force Considering Running Condition (고추력용 철심형 영구자석 선형동기전동기의 운전조건을 고려한 설계)

  • Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.85-93
    • /
    • 2007
  • This paper presents the design characteristics and strategies applied for steel-cored PMLSM(Permanent Magnet Linear Synchronous Motor) considering the running conditions. Particularly, optimal design consideration on steel-cored PMLSM for short reciprocating trajectory using dynamic capability and dynamic constraints has been performed. Furthermore, thermal aspects, detent force, and magnetic saturation in design of steel-cored PMLSM have been investigated.

GENERALIZATIONS OF ISERMANN'S RESULTS IN VECTOR OPTIMIZATION

  • Lee, Gue-Myung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 1993
  • Vector optimization problems consist of two or more objective functions and constraints. Optimization entails obtaining efficient solutions. Geoffrion [3] introduced the definition of the properly efficient solution in order to eliminate efficient solutions causing unbounded trade-offs between objective functions. In 1974, Isermann [7] obtained a necessary and sufficient condition for an efficient solution of a linear vector optimization problem with linear constraints and showed that every efficient solution is a properly efficient solution. Since then, many authors [1, 2, 4, 5, 6] have extended the Isermann's results. In particular, Gulati and Islam [4] derived a necessary and sufficient condition for an efficient solution of a linear vector optimization problem with nonlinear constraints, under certain assumptions. In this paper, we consider the following nonlinear vector optimization problem (NVOP): (Fig.) where for each i, f$_{i}$ is a differentiable function from R$^{n}$ into R and g is a differentiable function from R$^{n}$ into R$^{m}$ .

  • PDF

Design of a robust $H_{\infty}$ controller with regional stability constraints for uncertain linear systems (불확실한 선형 시스템의 지역 안정 제한 조건을 가진 강인한 $H_{\infty}$제어기의 설계)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.747-750
    • /
    • 1996
  • This paper considers the problem of robust H$_{\infty}$ control with regional stability constraints via output feedback to assure robust performance for uncertain linear systems. A robust H$_{\infty}$ control problem and the generalized Lyapunov theory are introduced for dealing with the problem, The output feedback H$_{\infty}$ controller makes the controlled outputs settle within a given bound and the control input not to be saturated. The regional stability constraints problem for uncertain systems can be reduced to the problem for the nominal systems by finding sufficient bounds of variations of the closed-loop poles due to modeling uncertainties. A controller design procedure is established using the Lagrange multiplier method. The controller design technique was illustrated on the track-following system of a optical disk drive.ve.

  • PDF