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Abstract

Identification theory for lincar discrete system has been
presented by a great many reference, but research works for
identification of continuous-time system are less than preceding
identification. In fact, a great many systems for cngineering
are continuous-time systems, hence, research for identification
of continuous-time system has important meaning. This paper
offers the following results:
1.Corresponding  relations  for  the of
continuous-time model and discrete medel may be shown,when
single input-output system has general characteristic roots.

2To do identification of single variable continuity lincar
system with stability constraints from samples of input-output
it with
constraints.

3. Main results of this paper may be explained by a
simple example.

parameters

data, is nccessary to  use  optimization stability

INTRODUCTION

There are many publications on lincar discretc systems
theory, but
identification. Considering the fact that most of engincering

identilication few on continuous-time systems
systems are continuous and there is no direct and efficient
algorithm to identify continuous -time systems by means of
it
important and meaningful to carry out some research on this
arca. In [1] it has been pointed out that there exist simple
corresponding  relationships  between  parameters of continuous

and discrete time systems model when all characteristic roots

transforming continuous systems into discrete  ones, is

of single variable system arc singlc ones. In this paper, the
rclationships  have been generalized in the case of general
systems with single variable.

The model stability is another important problem in
systems identification. Considering influence of disturbance and
of many factors, it is possible that identification models are
instable even if practical systems are stable ones. For the
purpose to solve the problems of model stability, authors
conncct  stability criteria as stability constraint conditions in
identification process, thercby, the identification problem can
be transformed into an optimum onc with inequality con-
straints, In the end of this paper, there is an example of

computer simulation.
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1. SYSTEMS CONTINUITY TIME ORBSERVABLE
AND JORDAN CANONICAL FORM

Consider an observable canonical state equation of a single
input-output lincar, constant-coelficient, dynamical system as
follows:

X = AX + BU )
Y = CX 2
in which,
0 1 0. .0 by
0 0 1. .0 b
A= 8= (3)
1
By An - 1 -ay bn
L i L
C = [1 0, ... 0} 4

It is convenient to identify the system since there are only
unknown parameters a, and bi (1=1,2,..,n,) existed.Since the

general form of systems state equation may be transformed
into obscrvable canonical one by linear transformation, then
the discussions are carricd out on the basis of original forms
of (1) and (2).

Supposc to know characteristic roots of the system, it is
possible to construct transform matrix through characteristic
rools. Usually, we supposc the system has a pair of conjugate
complex roots, single q's multiple roots and p’s single real
roats as follows:

)\1 =g + jo, )\2 = 0 — j©»  conjugate complex root,
A q’s multiple root,
?\31, )\32, ...... s )\3[1 P’s single root.

Then, to construct following real transform matrix
M=(§E772M1:M2! ®)
in which,



E =110, @ +o?) o 257t 2), .,

(02+°2)(“ - ‘)/2 cos[ (n-I)tg" 1 3 ]]T

[

7 =0 @03 s 2g70 D),

@20t V2 gyt £ )

and the form of My and My is shown in [3].

Take a linear transformation:

and we have Jordan canonical form of the system:

EEITTTIO P

Y.= CX
g w 7\2 1
‘A = MT'AM = 3 A, 1
40,0 -t 1
A
)‘31
: + >\32
Mp
B = M™'B, C=CM

in“which, sign’' + represents diagonal arrangement.

~2.: .. STATE SPACE . DISCRETIZATION AND

.» DISCRETE JORDAN CANONICAL FORM '

AR

©

()

®

®

(10)

Utilizing modified method of state space discretization [5}

for ;(8)..and (9), we get discrete model of the system as

follows:

~

Xy =F X ¥ Guy

in which, :

ay
(12)
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EXP(AT)
caTcosz , eUT;incoT
= ¥
L -caTsinuT' ecTcos(oT
. -
AT AT
TN Tr2e 2 p2, 18t e 2 pqye
P -
7\2T
Te )‘zT
[
L .
c)\31T
1 R (13)
|

G= JTEXP(AUBAL = L+ (1/2)AT+(1/30A%T2+.) B (19)

From (13), it is clear that the system has a pair of

conjugate complex roots oijoa, g's multiple root e)\zT

p's  single real MasT ,...,c)\:' "T, which aré in

correspondence with characteristic roots of continuous sysiems.

~

and

roots ¢

Since the second diagonal matrix Fp in F is not Jordan
canonical form, it is necessary to search a transform matrix
to transform F, into Jordan canonical form with multiple

roots. By means of induction, ¢’s characteristic vectors Qy,

Q2 s Qq for F2 may be shown as follows:

-
Q; = [10,0] (15)
and
Q : T
K+t = [Vi k4 1,V2 K+ 1smemVq K+1]
, ) f
k =12,...q-1 (16)
in which
AsT
Vk+1k+1 % YKk /T‘:z 17)
h ’
J 4,
1 k+2i T AT
v, = ——p (v Te V.. )
ik+1 Tc)\ZT i-1,k j=2 3 jHi-Lk+1
i=kk-1,.,2 (18)
Yiker =0 Viger SO B2ket -9
If Q = [Q4,Q2,4Qq] (20)



then
exz—':Te)\zT . qu)\zT/(q-l)!
~ ~ .
Q" ~N N _ Q
AT
~N e 2
L .d
e)\zT 1
AN ~N
= ~N ~N
N N
1
SalT
Ne &

_ . N ”
N=I ved L 21
and transformation

X, = NX 22)

into (11) and (12), then the Jordan canonical form of the
system is

Xys1 = FXy + Gy @)
- &% 4
Y, = €%, (24)
in which,
eUTcoscoT , ea'I;ian
F=NTEN= +
—eaT;incoT, ca'I;osz
AosT
R " o T
N
~N ~
N N 3 N (29)
AT NT
G = N1 G, C = CN (26)

1885

Synthesize (1)-(26), we have the relationships between
observable canonical form of systems continuity models and

Jordan canonical form of systems discreteness models as

follows:

~ AT

F = N"'M~'c MN @7
T

~ AT

G =NWM"![c Bd (28)
o

C = CMN (29)

3. DISCRETE TRANSFER FUNCTION
Discrete transfer function of the system is
HZ) = C@1-H~ G (30)

Through correspondent operation, the concrete form of
H(Z) is.

(C181 +C282)2+(C1 £2-Cags Je” T sin@T+ (€181 Tz gz )e® “coswT

H(z)=

T Eaol
(z-e coswT) Z+(e  sinwT) 2
q-3x ~
I ¢ r O =
. g 1=0 el w+2+1 5 Cqez+rys Bqrz+r
+ X + 31
k=g (z-e )\zT;k 121 z-e Nas ! S

in which, ¢,, g, represents parameters in matrix G and C,

respectively.
From (31), it that the relationships between
systems parameters of discrete state models and coefficients of

is clear
discrete transfer function. Therefore,it is easy to know that it
cocfficients of H(Z) have been identified, identified values of
model parameters of systems discrete state can be achieved
by means of partial fraction expansion. And then, based on
the relationships (27)-(29), we can get systems continuity time
state model. B

For the system with multiple input and output " variables,
if its observable cononical form is of regular diagonal block,
above considerations are also suitable to be used.

4, SYSTEM IDENTIFICATION WITH STABLE
CONSTRAINTS

As mentioned above, if characteristic value of continuous-
time model of the system is:A j then characteristic root of

discrete model is e ;T,Thcrcby, the stability between continuous
and discrete model is correspondent each other. So then for
the  purpose guaranteel the stability of identified
continuous-time model, it is enough to guarantee the stability
of identified discrete model.

to

Discrete transfer function of the system is

H(Z) = G(Z)/D(Z) (32



in - which, G(Z) and D(Z) are polynomials of z and the
order of G(Z) is not larger than of D(Z). Since we suppose
the system is observable and controllable, that is, G(Z) and
D(Z) have no common factors. Therefore, if the discrete
model is stable, the all zeros of D(Z) should falli inside unit
circle of complex plane.

Similar to Routh-Hurwitz criterion [6] it is possible to
utilize modified Schur-Cohn criterion to identify real
coefficient, polynomial:

n n-1
D(Zy =2 + d,Z o d,_+Z + d,, (33)

its all zeros fall inside unit circle or not.
Here, the division algorithm of Schur-Cohn criterion
used, its procedure the first

is
and is, step to construct a
reciprocal polynomial of D(Z), that is, D(ﬂ)(Z)=Z“D(Z' .

The roots of D(a) (Z) are the reciprocals of the roots of
D(Z) and ID(a) (Z)|=1D(Z)} on the unit circle. The next step
is to divide D(a) (Z) by D(Z)starting at the high-power end
to obtain a quotient ag =dg/d,, and remainder D1(a)(Z) of

degree n-1 or less so that.
0 @)/p@) = ao + D) /D@

o
The division process is repeated with D( 1) Z) and s
p P

reciprocal polynomial D (Z) and the sequence agq, ...a,_zis

generated according to the rule.

pC @/Du@ = aw + DL )(@)/Du@) for k=002,

(349
where Do(Z)=D(Z) and at each step D, (Z) is considered
to be a polynomial of degree n-k regardless of its
actual degree. Therefore, some a’s may be zero.
Sufficient and necessary conditions that zeros of D(Z) all
arc inside the unit circle are:

(1) DA) > 0

(2) D(-< 0 for n odd number (35)
> 0 for n even number

3) la,l <1 for k = 0,1,...,n2

For the purpose to apply above criterion as stability
constraint conditions in the procedure of practical systems
identification, first, from (32) we have input-output difference
equation of the system:

y(k) =-dyy(k-1) - .. -duy(k-n) + g,ulk-1) +.. +

+ gau(k-n) (36)

According to the method of least square, to define residual
error of (36) is.

e(!() = y(k) + dyyk-1) + .. + d.yk-n) -g,u(k-1) -

. = gnu(k-n) 37
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Through N times of measuring input and output of the
system, we have the following matrix equation:

E©) - y - Ho, @8)
in which,
e = [e(n),e(n+1),... ,e(N)]T (39)
y = [y(my(n+1),....y(N)] . (40)
0 = [+dy,+d2, t iy 81 582 e Bnl (41)
¥(n-1), y(n-2),..,5(0), u(n-1),..,u(0)
y(n),  y(o-D,..y(1), u(n), ..,u(1)
= | . . ) (42)

Y(N-1),y(N-2);...y(N-n),u(N-1),...u(N-n)

Since former n parameters in © are coefficients of
characteristic polynomial D(Z), then the problem to identify
the system with stability constraints by the method of least
squarc become to solve the following optimization problem
with constraints:

- E (8)E(0)

min J
s.t. (35)

#3)

Generally, optimization problem (43) is a nonlincar one,
and its solving may use suitable nonlinear programming
algorithms, then systems model is stable.

5. SIMULATION RESULTS

For the purpose to test proof of above discussions, there
arc some simulation procedures of low-order systems. And in
the case of big noise disturbance. there are stability problems
occurred for identified models.As an example, there is a
system:

0 1 0
X() = X + u(t) (44)
-0.01 -0.2
YO = [1, 1x() +B. W() (“3)

in which, W(t) is a random disturbance variable, and B, is a
disturbance strength coefficient,

Characteristic roots of the system are multiple
root. A= —0.1, and it is stable.

Similarly, we transform this model into discrete model by
taking the period T, then we have Jordan canonical form of
discrete system:

™

(46)



10(T+10)c 7 + 100

“7n

01T

lOT(l-c— Jem ot

= [09, 1/Tec™ 17| (48)
From above matrixes, it is possible to calculate precise
value of H(Z) and comparc it with
values.
Bascd on the method of least square, to identify discrete
transfer function:

identified paramcter

H(Z) = (g:2+82)/(ds +d, Z+77) @9)
Here, Schur-Cohn criterion (35) becomes:

1+dy +dy >0 (50)

1- dy +dy > 0 (51)

fdy | < 0 (52)

The subset in R°  surrounded by above incqualitics is

shown in Fig. 1.

For convenience sake, to takc computer random function
RND(K) as random noisc ‘¥(K) which is uniform distri-ution
in the interval [0,1]. If sampling period is 0.8 scconds,

input  function u(t)=cost+e~°® “cos2, B, =0 and B, =

30%,sample size is 200, identified values of paramcters arc
shown in Table 1. As a kind of comparisons,
precise parameter values listed in it

there are

From the results of Table 1, it is clear that if there is no
disturbance existed, identificd parameter values are closc to
precise values, and the model is stable. When there exists
the stebility
model, because identificd parameter

strong disturbance, it is to consider
problem of  identificd
values can not satisfy Schur-Cohn criterion. But if we give
then it possible

guarantee the stability of identificd discrete models,so further

necessary

stable constraints for the system, is to

induced continuous-models arc also stable.
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APPENDIX
Table.1
= T T —
Par.rieter Pody d, g1 gz B.
Precise Valuc* -1.846 0.852 1.042 -451 /
Identified Value -1.839 0.857 1.081 -470 0
Identified Value -2.018 1.005 1.204 -621 0.03
Identified Value** -1.913 0.981 1.138 -.552 0.63
in which, * - Calculated values,
** . with stable constraints.
R { ]
A~ [} 2
-l
Fig.1



