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GENERALIZATIONS OF ISERMANN’'S RESULTS
IN VECTOR OPTIMIZATION

GUE MYUNG LEE

1. Introduction

Vector optimization problems consist of two or more objective func-
tions and constraints. Optimization entails obtaining efficient solutions.
Geoffrion [3] introduced the definition of the properly efficient solution
in order to eliminate efficient solutions causing unbounded trade-offs
between objective functions.

In 1974, Isermann [7] obtained a necessary and sufficient condition
for an efficient solution of a linear vector optimization problem with
linear constraints and showed that every efficient solution is a properly
efficient solution. Since then, many authors [1, 2, 4, 5, 6] have extended
the Isermann’s results. In particular, Gulati and Islam (4] derived a
necessary and sufficient condition for an efficient solution of a linear
vector optimization problem with nonlinear constraints, under certain
assumptions,

In this paper, we consider the following nonlinear vector optimization

problem (NVOP):

(NVOP)  Maximize f(z) = [fi(z), -, fo(z)]*
subject to z € X = {z: g(x) 2 0},

where for each i, f; is a differentiable function from R" into R and g
is a differentiable function from R" into R™.

Recently, Gulati and Islam [6] obtained a necessary and sufficient
condition for an efficient solution of (NVOP), under certain assump-
tions.
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We derive a necessary and sufficient condition for ar efficient solution
of (NVOP), under certain assumptions different from Gulati and Islam’s
[6]. Our results generalize those of Isermann [7], and Gulati and Islam
[4], who deal with linear vector optimization problems.

2. Results
We first recall the following definitions.

DEFINITION 2.1. 2" € X is said to be an efficient solution of (NVOP)
if there is no = € X such that f(z) 2 f(z°) and f(z) # f(z°).

DErFHTION 2.2 [3]. 2 € X is said to be a properly efficient solution
of (NVOP) if it is efficient and there exists a scalar /4 > 0 such that,
for cach 7, we have

[filz) = fie®)] [ [fi(z®) ~ fi(x)] S 14

for some j such that f;(z) < f;(z°) whenever z < X and fi(z) >
Fi(z®).

LEMMA 2.1. z2° € X is an efficient solution of (NVOP) if and only if
x¥ is an optimal solution of the following scalar optimization problem

(SOP):

(SOP)

Maximize d'f(z)

subject to z € X, = {z:g(z) 20, f(z) - f(z°) 2 0},
where d is a positive constant in RP.

Proof. Let ¥ € X be an efficient solution of (NVCP). Suppose that

2% is not an optimal solution of (SOP). Then there exists z* such that

g(2") 20, f(c*) - f(«°) 20 and d'f(z") > d f(z°).

Since d > 0, we have

g(z*) 20, f(z*) 2 f(z°) and f(z%)# {(2°).
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This contradicts the fact that z° is an efficient solution of (NVOP).

Conversly, let z° be an optimal solution of (SOP). Suppose that z°
is not an efficient solution of (NVOP). Then there exists T € X such
that

9(Z) 20, f() 2 f(z°) and f(Z) # f(z°).

Since d > 0, we have

9(z) 20, and d'f(T) > d'f(2").

This contradicts the fact that z° is an optimal solution of (SOP).

Whenever we assume that the set X, satisfies a constraint quali-
fication, we shall mean that the set X, satisfies the Kuhn - Tucker
constraint qualification or the Arrow - Hurwicz - Uzawa, constraint qual-
ification defined in [9].

THEOREM 2.1 (ISERMANN TYPE NECESSARY CONDITION). Suppose
that g1 is quasiconcave at z° € X, where I = {i : gi(z°) = 0} and the
set X, satisfies a constraint qualification at z°. If z° is an efficient
solution of (NVOP), then there exists u® € R* such that u® > 0 and

forall z € X, uOtVf(:cO):c < uOtVf(xu)xO.
Proof. Suppose that z° is an efficient solution of (NVOP). By Lemma
2.1, % is an optimal solution of (SOP) for a fixed d > 0. Since the
set X, satisfies a constraint qualification at z°, by the Kuhn - Tucker

necessary optimality theorem [8, 9], there exist v 2 0, v° € RP, w® 2>
0, w° € R" such that

d'V () + v 'V £(z°) + wd' Vgr(z°) = 0.
Let u® = d + v°. Then u® > 0 and

(1) 'V f(z°) + v} Vgr(z") = 0.
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Sinee for all € X, gi(z) 2 ¢g;(2°), by the quasiconcavity of ¢; at =",

Vyi(z*)(z ~2%) 20,

and

'J/v(}lVgl(:rU)('x ~z%) 20 forallz € X.

From (1), we have, for all r € X
‘ILOIVf(.’I,'U).’)T < uUlVf(xU);rO.

REMARK 2.1. Gulati and Islam [6] showed that when f is pscudo-
convex at z° € X, g; is quasiconcave at z° and the set {r : g(z) =
0,Vf(z%)z — Vf(z")z® 2 0} satisfies a constraint qualification at z°,
the result of Theorem 2.1 holds. In Theorem 2.1, the condition of pseu-
doconvexity of f is removed.

THEOREM 2.2 [6](ISERMANN TYPE SUFFICIENT CONDITION). Supp-
ose that f is pseudoconcave at z° € X. If there exists u" € RP such
that v® > 0 and for all z € X,

uO'Vf(r”,);r < uanf(rU);rO,

then x¥ is an efficient solution of (NVOP).

Hence we have the following theorem from above theorems.

THEOREM 2.3. Assume that f is pseudoconcave at r° € X, g; is
quasiconcave at z°, where I = {i : g;(2°) = 0} and the set X, satisfies
a constraint qualification at z°. Then z° is an efficient solution of
(NVOP) if and only if there exists u’ € RP such that " > 0 and for all
re X,

uOtV’f(mO)z < u”!V’f(:cU)xO.

We give an example satisfying all the assumptions of Theorem 2.3.
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EXAMPLE 2.1 [8,10]. Consider the following vector optimization
problem:

Maximize f(z) = (z,—z% + 2z)"
subject to z €Y = {z € R: g(z) = —2? + 2z 2 0}.

We can see easily that the set of all the efficient solutions consists
of the line segment [1,2], f is pseudoconcave and g 1s quasiconcave,
Let 2° € (1,2]. Then the set {z € R : g(z) 2 0, f(z)— f(z%) 2 0}
satisfies the Kuhn - Tucker constraint qualification at z°. Hence all
the assumptions of Theorem 2.3 are satisfied. In fact, z° = 1 is not a
properly efficient solution.

From Theorem 2.3, and Theorem 1 and 2 in [3], we have the following
corollary.

COROLLARY 2.1. Suppose that f is pseudoconcave at z° € X, g5 1is
quasiconcave at z°, where I = {1 : gi(z°) = 0} and the set X, satisfies
a constraint qualification at z°. Then z° is an efficient solution of
(NVOP) if and only if z° is a properly efficient solution of the following
linear vector optimization problem:

(LIVOP) Maximize [Vf(z°)z,- -, Vf,(z°)z]*
subject to g(z) 2 0

REMARK 2.2. Our Theorem 2.3 and Corollary 2.1 are generaliza-
tions of Theorem 2 and 4 in [4], respectively.

Isermann [7] considered the following linear vector optimization prob-

lem (LVOP):

(LVOP) Maximize Cz
subject to Az = b,z 2 0,
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where C' is an p x » matrix, 4 is an m x . matrix, € R™ and b ¢ R™.

We can rewtite (LVOP) as follows:

(LVOP") Maximize Cx

subject to Az 2 b

Since (LVOP) satisfies all the assumptions of Theorem 2.3 at all the
efficient solutions of (LVOP), by Theorem 2.3 and Corollary 2.1, we
obtain the following corollary.

COROLLARY 2.2 [7]. The following statements are equivalent.
(1) A feasible point 7' is an efficient solution of (LVOP).
(2) 2° is a feasible point and there exists u® € R? such that u® > 0 and
for all feasible points z of (LVOP),
W'Cr < W' 020,

{(3) A feasible point z° is a properly efficient solution of (LVOP).
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