GENERALIZATIONS OF ISERMANN'S RESULTS IN VECTOR OPTIMIZATION

GUE MYUNG LEE

1. Introduction

Vector optimization problems consist of two or more objective functions and constraints. Optimization entails obtaining efficient solutions. Geoffrion [3] introduced the definition of the properly efficient solution in order to eliminate efficient solutions causing unbounded trade-offs between objective functions.

In 1974, Isermann [7] obtained a necessary and sufficient condition for an efficient solution of a linear vector optimization problem with linear constraints and showed that every efficient solution is a properly efficient solution. Since then, many authors [1, 2, 4, 5, 6] have extended the Isermann's results. In particular, Gulati and Islam [4] derived a necessary and sufficient condition for an efficient solution of a linear vector optimization problem with nonlinear constraints, under certain assumptions.

In this paper, we consider the following nonlinear vector optimization problem (NVOP):

(NVOP) Maximize
$$f(x) = [f_1(x), \dots, f_p(x)]^t$$

subject to $x \in X = \{x : g(x) \ge 0\},$

where for each i, f_i is a differentiable function from R^n into R and g is a differentiable function from R^n into R^m .

Recently, Gulati and Islam [6] obtained a necessary and sufficient condition for an efficient solution of (NVOP), under certain assumptions.

Received June 3, 1991. Revised June 26, 1992.

We derive a necessary and sufficient condition for an efficient solution of (NVOP), under certain assumptions different from Gulati and Islam's [6]. Our results generalize those of Isermann [7], and Gulati and Islam [4], who deal with linear vector optimization problems.

2. Results

We first recall the following definitions.

DEFINITION 2.1. $x^0 \in X$ is said to be an efficient solution of (NVOP) if there is no $x \in X$ such that $f(x) \ge f(x^0)$ and $f(x) \ne f(x^0)$.

DEFIITION 2.2 [3]. $x^0 \in X$ is said to be a properly efficient solution of (NVOP) if it is efficient and there exists a scalar M > 0 such that, for each i, we have

$$[f_i(x) - f_i(x^0)] / [f_j(x^0) - f_j(x)] \leq M$$

for some j such that $f_j(x) < f_j(x^0)$ whenever $x \in X$ and $f_i(x) > f_i(x^0)$.

LEMMA 2.1. $x^0 \in X$ is an efficient solution of (NVOP) if and only if x^0 is an optimal solution of the following scalar optimization problem (SOP):

Maximize
$$d^t f(x)$$

subject to $x \in X_s = \{x : g(x) \ge 0, f(x) - f(x^0) \ge 0\},\$

where d is a positive constant in \mathbb{R}^p .

Proof. Let $x^0 \in X$ be an efficient solution of (NVOP). Suppose that x^0 is not an optimal solution of (SOP). Then there exists x^* such that

$$g(x^*) \ge 0$$
, $f(x^*) - f(x^0) \ge 0$ and $d^t f(x^*) > d^t f(x^0)$.

Since d > 0, we have

$$g(x^*) \ge 0$$
, $f(x^*) \ge f(x^0)$ and $f(x^*) \ne f(x^0)$.

Generalizations of Isermann's results in vector optimization

This contradicts the fact that x^0 is an efficient solution of (NVOP).

Conversly, let x^0 be an optimal solution of (SOP). Suppose that x^0 is not an efficient solution of (NVOP). Then there exists $\overline{x} \in X$ such that

$$g(\overline{x}) \ge 0$$
, $f(\overline{x}) \ge f(x^0)$ and $f(\overline{x}) \ne f(x^0)$.

Since d > 0, we have

$$g(\overline{x}) \ge 0$$
, and $d^t f(\overline{x}) > d^t f(x^0)$.

This contradicts the fact that x^0 is an optimal solution of (SOP).

Whenever we assume that the set X_s satisfies a constraint qualification, we shall mean that the set X_s satisfies the Kuhn - Tucker constraint qualification or the Arrow - Hurwicz - Uzawa constraint qualification defined in [9].

THEOREM 2.1 (ISERMANN TYPE NECESSARY CONDITION). Suppose that g_I is quasiconcave at $x^0 \in X$, where $I = \{i : g_i(x^0) = 0\}$ and the set X_s satisfies a constraint qualification at x^0 . If x^0 is an efficient solution of (NVOP), then there exists $u^0 \in R^p$ such that $u^0 > 0$ and

for all
$$x \in X$$
, $u^{0}^{t} \nabla f(x^{0}) x \leq u^{0}^{t} \nabla f(x^{0}) x^{0}$.

Proof. Suppose that x^0 is an efficient solution of (NVOP). By Lemma 2.1, x^0 is an optimal solution of (SOP) for a fixed d > 0. Since the set X_s satisfies a constraint qualification at x^0 , by the Kuhn - Tucker necessary optimality theorem [8, 9], there exist $v^0 \ge 0$, $v^0 \in R^p$, $w^0 \ge 0$, $w^0 \in R^n$ such that

$$d^{t}\nabla f(x^{0}) + v^{ot}\nabla f(x^{0}) + w_{I}^{0}\nabla g_{I}(x^{0}) = 0.$$

Let $u^0 = d + v^0$. Then $u^0 > 0$ and

(1)
$$u^{ot}\nabla f(x^0) + w_I^{ot}\nabla g_I(x^0) = 0.$$

Since for all $x \in X$, $g_I(x) \ge g_I(x^0)$, by the quasiconcavity of g_I at x^0 ,

$$\nabla g_I(x^0)(x-x^0) \ge 0,$$

and

$$w_I^{0^I} \nabla g_I(x^0)(x-x^0) \ge 0 \text{ for all } x \in X.$$

From (1), we have, for all $x \in X$

$$u^{0} {}^t \nabla f(x^0) x \leq u^{0} {}^t \nabla f(x^0) x^0.$$

REMARK 2.1. Gulati and Islam [6] showed that when f is pseudoconvex at $x^0 \in X$, g_I is quasiconcave at x^0 and the set $\{x : g(x) \ge 0, \nabla f(x^0)x - \nabla f(x^0)x^0 \ge 0\}$ satisfies a constraint qualification at x^0 , the result of Theorem 2.1 holds. In Theorem 2.1, the condition of pseudoconvexity of f is removed.

THEOREM 2.2 [6](ISERMANN TYPE SUFFICIENT CONDITION). Suppose that f is pseudoconcave at $x^0 \in X$. If there exists $u^0 \in R^p$ such that $u^0 > 0$ and for all $x \in X$.

$$u^{0}^t \nabla f(x^0) x \leq u^{0}^t \nabla f(x^0) x^0$$

then x^0 is an efficient solution of (NVOP).

Hence we have the following theorem from above theorems.

THEOREM 2.3. Assume that f is pseudoconcave at $x^0 \in X$, g_I is quasiconcave at x^0 , where $I = \{i : g_i(x^0) = 0\}$ and the set X_s satisfies a constraint qualification at x^0 . Then x^0 is an efficient solution of (NVOP) if and only if there exists $u^0 \in R^p$ such that $u^0 > 0$ and for all $x \in X$,

$$u^{0}^{t}\nabla f(x^{0})x \leq u^{0}^{t}\nabla f(x^{0})x^{0}.$$

We give an example satisfying all the assumptions of Theorem 2.3.

Generalizations of Isermann's results in vector optimization

EXAMPLE 2.1 [8,10]. Consider the following vector optimization problem:

Maximize
$$f(x) = (x, -x^2 + 2x)^t$$

subject to $x \in Y = \{x \in R : g(x) = -x^2 + 2x \ge 0\}.$

We can see easily that the set of all the efficient solutions consists of the line segment [1,2], f is pseudoconcave and g is quasiconcave. Let $x^0 \in (1,2]$. Then the set $\{x \in R : g(x) \ge 0, f(x) - f(x^0) \ge 0\}$ satisfies the Kuhn - Tucker constraint qualification at x^0 . Hence all the assumptions of Theorem 2.3 are satisfied. In fact, $x^0 = 1$ is not a properly efficient solution.

From Theorem 2.3, and Theorem 1 and 2 in [3], we have the following corollary.

COROLLARY 2.1. Suppose that f is pseudoconcave at $x^0 \in X$, g_I is quasiconcave at x^0 , where $I = \{i : g_i(x^0) = 0\}$ and the set X_s satisfies a constraint qualification at x^0 . Then x^0 is an efficient solution of (NVOP) if and only if x^0 is a properly efficient solution of the following linear vector optimization problem:

(LIVOP) Maximize
$$[\nabla f_1(x^0)x, \dots, \nabla f_p(x^0)x]^t$$

subject to $g(x) \ge 0$

REMARK 2.2. Our Theorem 2.3 and Corollary 2.1 are generalizations of Theorem 2 and 4 in [4], respectively.

Isermann [7] considered the following linear vector optimization problem (LVOP):

(LVOP) Maximize
$$Cx$$

subject to $Ax = b, x \ge 0$,

Gue Myung Lee

where C is an $p \times n$ matrix, A is an $m \times n$ matrix, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. We can rewrite (LVOP) as follows:

(LVOP') Maximize
$$Cx$$
 subject to $Ax \ge b$
$$-Ax \ge -b$$
 $x \ge 0$.

Since (LVOP)' satisfies all the assumptions of Theorem 2.3 at all the efficient solutions of (LVOP), by Theorem 2.3 and Corollary 2.1, we obtain the following corollary.

COROLLARY 2.2 [7]. The following statements are equivalent.

- (1) A feasible point x^0 is an efficient solution of (LV()P).
- (2) x^0 is a feasible point and there exists $u^0 \in \mathbb{R}^p$ such that $u^0 > 0$ and for all feasible points x of (LVOP),

$$u^{0}{}^t C x \le u^{0}{}^t C x^0.$$

(3) A feasible point x^0 is a properly efficient solution of (LVOP).

References

- K.L. Chew and E.U. Choo, Pseudolinearity and efficiency, Mathematical Programming 28 (1984), 226-239.
- E.U. Choo, Proper efficiency and the linear fractional vector maximum problem, Operations Research 32 (1984), 216-220.
- A.M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618-630.
- T.R. Gulati and M.A. Islam, Proper efficiency in linear vector maximum problems with nonlinear constraints, J. Austral. Math. Soc., Ser. A 46 (1989), 229-235.
- 5. T.R. Gulati and M.A. Islam, Efficiency in linear fractional vector maximization problem with nonlinear constraints, Optimization 20 (1989), 477-482.
- T.R. Gulati and M.A. Islam, Efficiency and proper efficiency in nonlinear vector maximum problems, European Journal of Operations Research 44 (1990), 373-382.

Generalizations of Isermann's results in vector optimization

- H. Isermann, Proper efficiency and the linear vector maximum problem, Operations Research 22 (1974), 189-191.
- 8. H.W. Kuhn and A.W. Tucker, Nonlinear programming, in: J. Neyman (ed)
 Proceedings of the Second Berkerly Symposium on Mathematical Statistics and
 Probability, University of California Press, Berkerly, California, 1951, 481-492.
- 9. O.L. Mangasarian, Nonlinear programming, McGraw-Hill, New York, 1969.
- K. Tamura and S. Arai, On proper and improper efficient solutions of optimal problems with multicriteria, Journal of Optimization Theory and Applications 38 (1982), 191-205.

DEPARTMENT OF NATIONAL SCIENCE, PUSAN NATIONAL UNIVERSITY OF TECHNOLOGY, PUSAN 608-739, KOREA.