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Abstract 

 
We present a method for 3D shape reconstruction of inextensible deformable surfaces from a 
single image. The key of our approach is to represent the surface as a 3D triangulated mesh 
and formulate the reconstruction problem as a sequence of Linear Programming (LP) 
problems. The LP problem consists of data constraints which are 3D-to-2D keypoint 
correspondences and shape constraints which are designed to retain original lengths of mesh 
edges. We use a closed-form method to generate an initial structure, then refine this structure 
by solving the LP problem iteratively. Compared with previous methods, ours neither 
involves smoothness constraints nor temporal consistency, which enables us to recover 
shapes of surfaces with various deformations from a single image. The robustness and 
accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on 
real data. 
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1．Introduction 

3D shape recovery of objects from 2D images is of central importance in computer vision. 
Many years of work in the field have led to several reliable approaches for reconstruction of 
rigid [1], multiple rigid [2] and articulated rigid objects [3]. However, many objects in the 
real world vary their shapes over time, such as faces, papers, clothes etc. The problem of 
reconstructing the shape of such deformable objects remains challenging. 

Common methods for deformable structure recovery either introduce strong priors of 
deformations which makes it not adapted for objects undergoing complex 
deformations[4-13], or involve temporal consistency that requires a good initialization [14]. 
An alternative way is to build a deformation model using machine learning techniques 
[15-18], but this method lacks sufficient generality when the trained model is too specific. 

In this paper, we describe a method to recover the 3D structure of a non-rigid object from 
a single image. More specifically, we dedicate to recover shapes of inextensible deformable 
surfaces. The central idea of our method is to represent the surface as a 3D triangulated mesh, 
and formulate the reconstruction problem as a sequence of Linear Programming (LP) 
problems. Our method has three main advantages compared with previous ones. Firstly, 
formulating the problem as an LP problem has great advantages since the LP can be solved 
quite reliably and efficiently. Secondly, our method does not involve any temporal 
consistency, which means that it can recover the structure from a single image. Thirdly, there 
are no smoothness constraints introduced in our method which makes it applicable for 
surfaces with various kinds of deformations such as those of Fig. 1. 
 

 
Fig. 1. Examples of deformable surface reconstruction from a single image using our approach. The 
top row are the original images. The middle row are the images with reprojected meshes. The bottom 

row are the reconstructed triangulated meshes seen from a different view 
 

The paper is organized as follows. Previous work is reviewed in Section 2. The 
deformable reconstruction using LP is presented in Section 3. Some implementation details 
are stated in Section 4. Finally, experimental results on both synthetic and real data are 
reported in Section 5, followed by conclusions in Section 6. 
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2．Previous Work 
Various methods have been proposed for the recovery of non-rigid 3D structures from 2D 
images. Generally, these approaches can be divided into three categories: 
structure-from-motion based methods, machine learning based methods and physics based 
methods. 

Most approaches [5-13]within the non-rigid structure from motion (NRSFM) framework 
stem from Tomasi and Kanade's factorization algorithm which is originally designed for rigid 
structures [4]. Bregler et al. [5] are the first to use a factorization-based method for the 
recovery of non-rigid structure and motion, in which the 3D shape in each frame is 
formulated as a linear combination of a set of basis shapes. Brand [6] recasts NRSFM as a 
constrained optimization problem and solves this problem by directly minimizing the metric 
geometric errors. Torresani et al. [7] model the time-varying shape as a rigid transformation 
combined with a non-rigid deformation. This model is a form of Probabilistic Principal 
Components Analysis (PPCA) shape model whose parameters can be learned in the 
reconstruction process. In the case of perspective cameras, Xiao et al. [8] present a 
closed-form solution for perspective reconstruction given the assumption that there exists a 
set of independent deformable basis shapes. Del Bue et al. [9] formulate NRSFM as a 
constrained non-linear minimization adding priors on the degree of deformability of each 
point and then optimize accordingly for the perspective and deformation parameters. Bartoli 
et al. [10] propose a low-rank structure-from-motion method which handles missing data, 
automatically selects the number of deformation modes and makes use of several different 
priors. Agudoet. al. [11-13] propose a series of methods to simultaneously recover camera 
pose and 3D shape of non-rigid and potentially extensiblesurfaces from a monocular image 
sequence. Most NRSFM methods make strong assumptions about the deformations which 
makes it more suitable for objects undergoing small deformations (although some NRSFM 
methods could deal with relatively large deformations such as human motion). Besides, 
NRSFM is a kind of template-free method which needs the whole image sequence to 
compute the solution and thus is not suited for reconstruction on the fly. 

Machine learning based methods[15-18] try to learn a deformation model from the 
training data, and apply the model for new data. Active appearance models (AAMs) are 
typical generative models for nonrigid objects and have been successfully applied for 3D 
face reconstruction [15,16]. AAM consists of a linear combination of shape bases and a 
linear combination of appearance bases which can be learned from training samples. Fitting 
an AAM to an image is obtained by minimizing the error between the input image and the 
closest model instance, which is a nonlinear optimization problem. However, the underlying 
linearity assumption makes AAMs only suitable for smoothly deformed objects. In fact, 
training a model that can be applied for general deformations requires complex nonlinear 
learning techniques and a large number of training samples with all kinds of deformations. 
Recent work shows that this kind of model can be obtained by learning its local deformation 
models, and combining them together to reconstruct global shapes [17]. However, the 
training samples are still not easy to obtain even though local patches have fewer degrees of 
freedom. 

Physics based methods[14,19-29] introduce a prior knowledge of deformations and 
formulate the problem as an optimization problem. These approaches have been widely used 
for modeling and animation purposes in computer graphics [19]. In computer vision, 
Gay-Bellile et al. [20] present an 2D intensity-based non-rigid registration method with 
self-occlusion reasoning. This method constrains the 2D warp to shrink in self-occluded 
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regions while detecting them based on this property and successfully deals with extreme 
self-occlusions. However, this method is only suited for 2D registration and hard to be 
generalized to 3D cases. McInerney et al. [21] present a physics based approach for 
recovering 3D shapes of nonrigid objects using a 3D elastically deformable balloon model 
that is based on a thin-plate under tension spline. Although this method is very effective, 
introducing smoothness constraints into the objective function limits its applicabilities. 
Salzmann et al. [22]express the deformations as a linear combination of modes and present a 
closed-form solution to recover the shape of a non-rigid inelastic surface from an individual 
image. This method obtains the modes by applying Principal Component Analysis to a 
matrix of registered training meshes in deformed configurations, which makes it only 
suitable for surfaces that have similar deformation modes with the training examples. 
Perriollat et al. [23] use 3D bounds on the keypoints as distance constraints to recover 
structures of inextensible deformable surfaces. This method uses pairwise constraints to get 
an initial bound for each keypoint and refines them as a whole iteratively. The effectiveness 
of this method is based on establishing perfect keypoint correspondences, that is, there 
shouldn't be mismatching between the template and the image which is rare in practice. 
Chhatkuli et al. [28] theoretically analysis why existing convex numerical and analytical 
solutions for isometricsurface reconstruction from a single image may be unstable under 
perspective and weak-perspective conditions, and propose a new algorithm which works 
under all imaging conditions. Salzmann et al. [14] represent surfaces as triangulated meshes 
and disallow large changes of edge orientation between two consecutive frames, and 
formulate the tracking problem as an second order cone programming (SOCP) feasibility 
problem which can be efficiently solved. However, this method introduces strong constraints 
to bound the vertex displacements from on frame to the next, which makes it only applicable 
for the tracking context in which the shape for the first frame is known. 

3．Linear Programming for Deformable Surface Reconstruction 
To formulate general deformations, the surface is represented as a 3D triangulated mesh in 
this paper, and the purpose of reconstruction is to retrieve the 3D position of each mesh 
vertex from a single image. We will show that the recovery of the mesh could be formulated 
as a sequence of LP problems which can be efficiently solved. In this section, we briefly 
introduce the LP problem first, then describe how to formulate the reconstruction problem as 
an LP formulation, and give a method to reduce the number of unknowns of this LP problem. 

3.1 Linear Programming 
Recently, there has been interest in solving geometric vision problems such as triangulation 
and camera resectioning using 𝐿∞ minimization [30,31]. The key advantage of using the 𝐿∞ 
is that the problem can be formulated as an SOCP feasibility problem with a single minimum 
and can be effectively solved. A general SOCP problem has the form: 
 

minimize 𝐟T𝐱 
subject to ‖𝐀𝑖𝐱 + 𝐛𝑖‖ ≤ 𝐜𝑖T𝐱 + 𝑑𝑖𝑖 = 1, … ,𝑚 

 
There are great advantages to recognize or formulate a problem as an SOCP problem. The 

most basic advantage is that the problem can then be solved very reliably and efficiently [32]. 
In [33], it shows that LP could be adopted in place of the SOCP in these geometric vision 
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problems. The SOCP includes LP as a special case, and a general LP has the form: 
 

minimize  𝐟T𝐱 
subject to  𝐀𝐱 ≤ 𝐛 
 
In the following of this paper, ‖∙‖ represents the 𝐿2 norm, and ‖∙‖∞ represents the 𝐿∞ 
norm. 

3.2 Keypoint Constraints 
The deformable surface is represented as a 3D triangulated mesh with 𝑛𝑣 vertices. We 
denote the 3D coordinates of each vertex of the mesh by 𝐯𝑖. The 3D structure of the mesh 
can be parameterized as a long vector 𝐕 by concatenating the three coordinates of all 
vertices, as: 𝐕 = �𝐯1𝑇, 𝐯2T,⋯ , 𝐯𝑛𝑣

T �. Our method relies on 3D-to-2D keypoint correspondences 
between the mesh and the image. Assuming that a keypoint in the mesh is𝐱𝑖, it can be 
expressed in terms of its barycentric coordinate of the facet where this keypoint lies on, as: 
 

𝐱𝑖 = 𝑎𝑖𝐯𝑝 + 𝑏𝑖𝐯𝑞 + 𝑐𝑖𝐯𝑟 = 𝐓𝑖𝐕,                    (1) 
 
where 𝐯𝑝, 𝐯𝑞 and 𝐯𝑟 are the vertices of the facet that 𝐱i lies on, 𝑎𝑖, 𝑏𝑖  and 𝑐𝑖are the 
barycentric coordinate of 𝐱𝑖 , and 𝐓𝑖  is a transformation matrix dependent on the 
barycentric coordinate. 

We assume that the camera to be calibrated, that is, the matrix of intrinsic parameters 𝐊 is 
known. Furthermore, we assume 𝐕 is in the camera coordinate, thus the projection of 𝐱i is: 

 

�
𝑢𝑖1

𝑢𝑖2
1
� = 𝐊𝐓𝑖𝐕 

 
The reprojection error with respect to image measurement (u�𝑖1 , u�𝑖2)T is: 
 

�

𝐊1𝐓𝑖𝐕
𝐊3𝐓𝑖𝐕

− u�𝑖1

𝐊2𝐓𝑖𝐕
𝐊3𝐓𝑖𝐕

− u�𝑖2
�= 1

𝐊3𝐓𝑖𝐕
�

(𝐊1 − u�𝑖1𝐊3)𝐓𝑖𝐕
(𝐊2 − u�𝑖2𝐊3)𝐓𝑖𝐕

�                (2) 

 
where 𝐊1, 𝐊2 and 𝐊3 are the first, second and third rows of 𝐊respectively. Due to image 
noise, Eq.(2) can not be zero, and a variable γ is used as its upper bound. If γ is considered 
to be known, we have: 
 

�
(𝐊1 − u�𝑖1𝐊3)𝐓𝑖𝐕
(𝐊2 − u�𝑖2𝐊3)𝐓𝑖𝐕

� ≤ γ𝐊3𝐓𝑖𝐕,          𝑖 = 1,⋯ ,𝑛,           (3) 

 
where 𝑛 is the number of 3D-to-2D keypoint correspondences. As shown in [23,24], 
constraints in Eq. (3) are convex constraints and the recovery of 𝐕 can be solved by SOCP. 
Let us consider to replace the 𝐿2 norm in Eq. (3) by 𝐿∞ norm, we have: 
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�
(𝐊1 − u�𝑖1𝐊3)𝐓𝑖𝐕
(𝐊2 − u�𝑖2𝐊3)𝐓𝑖𝐕

�
∞
≤ γ𝐊3𝐓𝑖𝐕,         𝑖 = 1,⋯ ,𝑛,          (4) 

 
or equivalently: 
 

�(𝐊𝑗 − u�𝑖
𝑗𝐊3)𝐓𝑖𝐕� ≤ γ𝐊3𝐓𝑖𝐕,         𝑖 = 1,⋯ ,𝑛,      𝑗 = 1,2            (5) 

 
Eq. (5) gives 4𝑛 linear inequalities that represent 𝑛 square pyramids centered in the 

camera, which means the 𝑛 second order cones in (3) are replaced by 𝑛 square pyramids in 
(5) when we use 𝐿∞ instead of 𝐿2 image error. Then the reconstruction can be achieved by 
solving the following LP problem: 
 

find       𝐕 
subject to  �(𝐊j − u�𝑖

𝑗𝐊3)𝐓𝑖𝐕� ≤ γ𝐊3𝐓𝑖𝐕,         𝑖 = 1,⋯ ,𝑛,      𝑗 = 1,2           (6) 
 

The minimalγin (6) could be found using a bisection algorithm [30]. However, the results 
are always unacceptable due to image noise and ambiguities of perspective projection. 
Therefore, other constraints should be introduced to regularize the mesh shape. 

3.3 Shape Constraints 
For an inextensible surface, the most generic constraints that preserve original lengths of 
mesh edges are in the form: 
 

�𝐯𝑝 − 𝐯𝑞� = 𝑙𝑟 ,           < 𝑝, 𝑞 >∈ 𝐶,                    (7) 
 
where 𝑙𝑟 is the original length of the edge linking vertices 𝐯𝑝 and 𝐯𝑞, and 𝐶={< 𝑝, 𝑞 >
�𝐯𝑝 and 𝐯𝑞  are neighboring vertices of the mesh�}. Note that Eq. (7) indicates that the nodal 
connectivity is used to define the shape constraints. Since 𝐯𝑝 − 𝐯𝑞 is a linear transformation 
of 𝐕, we denote: 
 

𝐯𝑝 − 𝐯𝑞 = 𝐄r𝐕 
 
where 𝐄r is a transformation matrix. Then the constraints in Eq. (7) can be expressed as: 
 

‖𝐄𝑟𝐕‖ = 𝑙𝑟,          𝑟 = 1,⋯ ,𝑚,                        (8) 
 
where 𝑚 is the number of mesh edges. The constraints in Eq. (8) are typically non-convex 
constraints and cannot be involved in the LP problem (6) directly. Below we will describe a 
linearization method that allows us to deal with these non-convex terms using an efficient LP 
solver in a sequential manner. 

Suppose we start with an initial point 𝐕0  and seek for a better point 𝐕1  in the 
neighborhood of 𝐕0. Point 𝐕1 can be expressed as 𝐕1 = 𝐕0 + δ0. So the problem now is to 
identify an appropriate vector δ0. In general, consider a scenario where we are in the 𝑘-th 
iteration and try to update point 𝐕𝑘 to point 𝐕𝑘+1 = 𝐕𝑘 + δ𝑘. The constraints in (8) in this 
case become: 
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‖𝐄𝑟(𝐕𝑘 + δ𝑘)‖ = 𝑙𝑟,          𝑟 = 1,⋯ ,𝑚, 
 
which can be expressed as: 
 

2𝐕𝑘𝑇𝐄𝑟𝑇𝐄𝑟δ𝑘 + δ𝑘
𝑇𝐄𝑟𝑇𝐄𝑟δ𝑘 = 𝑙𝑟2 − 𝐕𝑘𝑇𝐄𝑟𝑇𝐄𝑟𝐕𝑘 ,          𝑟 = 1,⋯ ,𝑚          (9) 

 
Now if we remove the second term on the left-hand side of Eq. (9), we have: 
 

2𝐕𝑘𝑇𝐄𝑟𝑇𝐄𝑟δ𝑘 ≈ 𝑙𝑟2 − 𝐕𝑘𝑇𝐄𝑟𝑇𝐄𝑟𝐕𝑘 ,          𝑟 = 1,⋯ ,𝑚              (10) 
 
The 𝑚 linear equality constraints in (10) can be put together as: 
 

𝐅𝑘δ𝑘 = 𝐠𝑘                                (11) 
 
Where 
 

𝐅𝑘 =

⎣
⎢
⎢
⎡ 2𝐕𝑘𝑇𝐄1𝑇𝐄1

2𝐕𝑘𝑇𝐄2𝑇𝐄2
⋮

2𝐕𝑘𝑇𝐄𝑚𝑇 𝐄𝑚⎦
⎥
⎥
⎤
,   𝐠𝑘 =

⎣
⎢
⎢
⎡ 𝑙1

2 − 𝐕𝑘𝑇𝐄1𝑇𝐄1𝐕𝑘
𝑙22 − 𝐕𝑘𝑇𝐄2𝑇𝐄2𝐕𝑘

⋮
𝑙𝑚2 − 𝐕𝑘𝑇𝐄𝑚𝑇 𝐄𝑚𝐕𝑘⎦

⎥
⎥
⎤
                    (12) 

 
Since Eq. (11) is valid as long as δ𝑘

𝑇𝐄𝑟𝑇𝐄𝑟δ𝑘 → 0, we add another set of constraints as: 
 

‖𝐄𝑟δ𝑘‖∞ ≤ 𝜂,          𝑟 = 1,⋯ ,𝑚                        (13) 
 
where 𝜂 is an upper bound. Using 𝐿∞ norm here makes (13) be a set of linear constraints, 
as: 
 

�𝐄𝑟
𝑗δ𝑘�∞ ≤ 𝜂,          𝑟 = 1,⋯ ,𝑚, 𝑗 = 1,2,3,                   (14) 

 
where 𝐄𝑟

𝑗  represents the 𝑗 -th row of 𝐄𝑟 . Now the reconstruction problem can be 
formulated as: 
 
minimize 𝜂 
subject to ��𝐊j − u�𝑖

𝑗𝐊3�𝐓𝑖(𝐕𝑘 + δ𝑘)� ≤ γ𝐊3𝐓𝑖(𝐕𝑘 + δ𝑘),         𝑖 = 1,⋯ ,𝑛,      𝑗 = 1,2 
�𝐄𝑟

𝑗δ𝑘�∞ ≤ 𝜂,          𝑟 = 1,⋯ ,𝑚, 𝑗 = 1,2,3 
𝐅𝑘δ𝑘 = 𝐠𝑘                                                      (15) 

 
Eq. (15) defines an LP problem whose optimization variable is �δ𝑘

𝑇, 𝜂�
𝑇

 of dimension 
3𝑛𝑣 + 1, where 3𝑛𝑣 is the dimension of δ𝑘 as well as 𝐕𝑘. From an initial point 𝐕0, we 
iteratively update 𝐕𝑘, i.e. set 𝐕𝑘+1 = 𝐕𝑘 + δ𝑘, by solving (15). This iteration continues until 
𝜂 → 0. 

3.4 Reducing the Number of Unknowns 
Since the last constraint in (15) is a set of 𝑚  linear equations with 3𝑛𝑣  unknowns 
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(3𝑛𝑣 > 𝑚), there are infinitely many solutions for these equations. It is well known that all 
these solutions can be linearly parameterized using singular value decomposition (SVD) of 
the coefficient matrix 𝐅𝑘. Since the 𝑚 linear equations in (15) are independent, the rank of 
matrix 𝐅𝑘 is 𝑚 and its SVD is given by 𝐅𝑘 = 𝐔∑𝐒. All the solutions of 𝐅𝑘δ𝑘 = 𝐠𝑘 are 
then given by: 
 

δ𝑘 = 𝐅𝑘+𝐠𝑘 + 𝐒𝑘𝜑𝑘                           (16) 
 
where 𝐅𝑘+ denotes the Moore-Penrose pseudo inverse of 𝐅𝑘, which can also be computed 
using the SVD of 𝐅𝑘, 𝐒𝑘 is a matrix of size 3𝑛𝑣 by 3𝑛𝑣 −𝑚 which consists of the last 
3𝑛𝑣 − 𝑚 columns of matrix 𝐒, and 𝜑𝑘 is an arbitrary vector of dimension 3𝑛𝑣 − 𝑚. With 
(16), the problem in (15) becomes: 
 
minimize  𝜂 
subject to  ��𝐊𝑗 − u�𝑖

𝑗𝐊3�𝐓𝑖(𝐕𝑘 + 𝐅𝑘+𝐠𝑘 + 𝐒𝑘𝜑𝑘)� ≤ γ𝐊3𝐓𝑖(𝐕𝑘 + 𝐅𝑘+𝐠𝑘 + 𝐒𝑘𝜑𝑘),         
𝑖 = 1,⋯ ,𝑛,      𝑗 = 1,2 

          �𝐄𝑟
𝑗(𝐅𝑘+𝐠𝑘 + 𝐒𝑘𝜑𝑘)� ≤ 𝜂, 𝑟 = 1,⋯ ,𝑚, 𝑗 = 1,2,3                     (17) 

 
Eq. (17) is an LP problem whose optimization variable is �δ𝑘

𝑇, 𝜂�
𝑇

 of dimension 3𝑛𝑣 − 𝑚 +
1. Take a 16 × 22 vertex rectangular mesh for example, the dimension of 𝐕 is 3𝑛𝑣 = 3 ×
16 × 22 = 1056, so (15) is an LP problem of dimension 1057. This mesh has 981 edges, 
i.e.𝑚 = 981, so (17) is an LP problem of dimension 76. As we can see, the dimension of (17) 
is much smaller than that of (15) after reducing the number of unknowns. 

4. Implementation Details 
In this section, we address some implementation details when we solving the LP problem in 
(17). These include a closed-form method to identify an initial point 𝐕0, and a refinement 
process to find the final result 𝐕𝑘 .Note that when dealing with videos, the temporal 
consistency is usually employed for initialization, i.e. using the structure recovered in the 
previous frame as the initialization in current frame. In this paper we focus on deformable 
reconstruction from a single Image, thus we omit this temporal consistency prior here. 

4.1 Initialization 
To some extent the effectiveness of our algorithm depends on how an initial point 𝐕0 is 
chosen. We use an idea that is similar to [23] to generate the initial point. 

 
Fig. 2. The 3D location of a keypoint is on the sightline coming through its 2D image measurement 

and the camera center. 
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As shown in Fig. 2, 𝐜 is the camera center, 𝐱𝑖 and 𝐱𝑗  are two keypoints in the camera 

coordinate (𝐜, 𝐱, 𝐲,𝐳), 𝐮𝑖 and 𝐮𝑗  are image measurements of 𝐱𝑖 and 𝐱𝑗  respectively in 
the image coordinate (𝐨,𝐮, 𝐯). Apparently, 𝐱𝑖 lies on the sightline coming through 𝐜 and 
𝐮𝑖 , and 𝐱𝑗  lies on the sightline coming through 𝐜 and 𝐮𝑗 , which gives us a triangle 
△ 𝐱𝑖𝐜𝐱𝑗 . We denote ‖𝐱𝑖‖ = 𝑠𝑖, �𝐱𝑗� = 𝑠𝑗 , ∠𝐱𝑖𝐜𝐱𝑗 = 𝛼𝑖𝑗, and we have: 

 
�𝐱𝑖 − 𝐱𝑗�

2
= 𝑠𝑖2 + 𝑠𝑗2 − 2𝑠𝑖𝑠𝑗cos𝛼𝑖𝑗 

 
where 𝛼𝑖𝑗 can be computed from 𝐮𝑖 and 𝐮𝑗 . For an inextensible deformable surface, the 
Euclidean distance between 𝐱𝑖 and 𝐱𝑗  is lower or equal to the geodesic distance on the 
surface due to the deformation. We denote this geodesic distance by 𝑑𝑖𝑗, and we have: 
 

�𝐱𝑖 − 𝐱𝑗�
2

= 𝑠𝑖2 + 𝑠𝑗2 − 2𝑠𝑖𝑠𝑗cos𝛼𝑖𝑗 ≤ 𝑑𝑖𝑗2 ⟹ 
�𝑠𝑗 − 𝑠𝑖cos𝛼𝑖𝑗�

2
≤ 𝑑𝑖𝑗2 − 𝑠𝑖2sin2𝛼𝑖𝑗 

 
It can be shown 𝑠𝑗  has a real solution if and only if: 
 

𝑑𝑖𝑗2 − 𝑠𝑖2sin2𝛼𝑖𝑗 ≥ 0  ⟹ 
𝑠𝑖 ≤

𝑑𝑖𝑗
�sin𝛼𝑖𝑗�

                                  (18) 

 
Eq. (18) gives an upper bound of 𝑠𝑖, and the minimum upper bound of 𝑠𝑖 can be computed 
from the whole set of keypoints, as: 
 

𝑠𝑖∗ ≤ min𝑗=1,⋯,𝑛
𝑗≠𝑖

𝑑𝑖𝑗
�sin𝛼𝑖𝑗�

                          (19) 

 
As has been pointed out in [23], 𝑠𝑖∗𝐞𝑖 can be seen as an estimation of 𝐱𝑖, where 𝐞𝑖 is the 

unit vector in the direction of the sightline from 𝐜 to 𝐮𝑖. Since 𝐱𝑖 = 𝐓𝑖𝐕, we have the 
following linear system: 

 
𝐌𝐕 = 𝐍,                                 (20) 

 
where 
 

𝐌 = �
𝐓1
⋮
𝐓𝑛
�,    𝐍 = �

𝑠1∗𝐞1
⋮

𝑠𝑛∗𝐞𝑛
� 

 
However, solving this linear system may have ambiguities and the reason is as follows. 

Each vertex of the mesh belongs to several adjacent facets. An example is shown in Fig. 3, 
where 𝐯𝑝 is a vertex and the facets it belongs to are shown in blue and gray. If all these 
facets do not contain keypoints, 𝐌 will be rank deficient, in other words, 𝐯𝑝  is an 
unconstrained vertex that can move freely. To remove this ambiguity, we regularize the 
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surface at each unconstrained vertex. We choose each unconstrained vertex such that the 
surface at this vertex is as locally flat as possible, that is, setting 𝐯𝑝 to be the average of its 
four neighboring vertices, as: 

 
𝐯𝑝 = 1

4
�𝐯𝑞 + 𝐯𝑟 + 𝐯𝑠 + 𝐯𝑡�                         (21) 

 
where 𝐯𝑞 ,𝐯𝑟, 𝐯𝑠 and 𝐯𝑡 are four neighboring vertices of 𝐯𝑝 as shown in Fig. 3. 

 
Fig. 3. An vertex 𝐯𝑝 of the mesh belongs to several adjacent facets which are shown in blue and gray. 
 

For each unconstrained vertex, we introduce a linear equality (21) (if 𝐯𝑝 is on the 
boundary of the mesh, we let it to be the average of its two neighboring vertices). Adding all 
these equalities to (20) gives an extended linear system: 

 
𝐌�𝐕 = 𝐍�,                                (22) 

 
where 𝐌�  is a full-rank matrix. Solving the linear system (22) yields an initial structure. 
However, this linear system is extremely sensitive to outliers. In practice, after solving this 
system, we remove the keypoint with maximum reprojection error and re-solve this system 
until the maximum reprojection error is less than 5 pixels, and then use this result as the 
initial mesh 𝐕0. Fig. 4(a) shows an example of 𝐕0 generated by this linear initialization 
method. As we can see, the reprojection of 𝐕0 in Fig. 4(a) is generally fine, but its overall 
shape is wrong due to depth ambiguities and outliers. 

4.2 Refinement 
Given the initial point 𝐕0 and an upper bound of reprojection errorsγ, we can iteratively 
solve the problem (17) to refine the mesh. In the 𝑘-th iteration, once a solution 𝜑𝑘 of (17) 
is calculated, we (i) obtain δ𝑘 using (16), and set 𝐕𝑘+1 = 𝐕𝑘 + δ𝑘, then let 𝑘 = 𝑘 + 1; (ii) 
use the updated point to re-evaluate 𝐅𝑘 and 𝐠𝑘 using (12), compute the SVD of 𝐅𝑘 and 
then 𝐅𝑘+  and 𝐒𝑘 ; and (iii) solve (17) with the updated data to obtain a new 𝜑𝑘 . 
Theoretically, this iteration should continue until δ𝑘

𝑇𝐄𝑟𝑇𝐄𝑟δ𝑘 → 0 as 𝜂 → 0 which means 
Eq. (10) and (9) are equivalent to each other. In practice, we do not have to wait until 𝜂 → 0, 
but stop the iteration and accept 𝐕𝑘 as the result if the difference between each edge length, 
‖𝐄𝑟𝐕𝑘‖, and its original length, 𝑙𝑟, is below 0.001𝑙𝑟 . If the LP problem (17) becomes 
infeasible in a certain iteration, it means there is no solution for the current𝛾and we say 
this𝛾is infeasible, otherwise we say this𝛾is feasible. The procedure of this refinement process 
can be summarized as Algorithm 1. 
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Algorithm 1 Refinement 
Require: The initial structure 𝐕0 and an upper bound of reprojection errors 𝛾 
1: 𝑘 = 0 
2: repeat 
3:   Solve the LP problem (17) to obtain a solution  
4:   if the LP problem (17) does not have a solution then 
5:     𝛾 is infeasible and stop the algorithm. 
6:   end if 
7:   Calculateδ𝑘 using Eq. (16) 
8:   𝐕𝑘+1 = 𝐕𝑘 + δ𝑘 
9:   𝑘 = 𝑘 + 1 
10:  Re-evaluate 𝐅𝑘 and 𝐠𝑘 using Eq. (12) 
11:  Calculate 𝐅𝑘+ and 𝐒𝑘from the SVD of 𝐕𝑘 
12: until max𝑟|‖𝐄𝑟𝐕𝑘‖ − 𝑙𝑟| < 0.001𝑙𝑟  
13: 𝛾 is feasible and output 𝐕𝑘 
 

In Algorithm 1, a relatively large 𝛾tends to be feasible (e.g.𝛾 = 10). However, 𝛾 may 
still be infeasible if large outliers exist. In this situation, we continuously increase 𝛾 until a 
feasible 𝛾 is found. The procedure of finding a feasible 𝛾 is summarized as Algorithm 2. 
 
Algorithm 2 Finding a feasible 𝛾 
Require: The initial structure 𝐕0 and an upper bound of reprojection errors 𝛾 
1: Do Algorithm 1 with 𝐕0 and 𝛾 
2: if 𝛾 is infeasiblethen 
3:   𝛾 = 2 × 𝛾 
4:   Go to step 1 
5: end if 
6: Output 𝐕𝑘 and 𝛾 
 

Once finding a feasible 𝛾, we decrease 𝛾, use the refined structure 𝐕𝑘 as a new initial 
point 𝐕0, and redo the refinement process until the minimum feasible 𝛾, 𝛾min, is found. 
The procedure of finding 𝛾min  is essentially heuristic which can be summarized as 
Algorithm 3. 
 
Algorithm 3 Computing𝛾min 
Require: A refined mesh 𝐕𝑘 and the feasible𝛾 obtained by Algorithm 2 
1: 𝐕0 = 𝐕𝑘, 𝛾feasible = 𝛾, 𝛾step = 𝛾/2 
2: repeat 
3:   𝛾 = 𝛾feasible − 𝛾step 
4:   Do Algorithm 1 with 𝐕0 and 𝛾 
5:   if 𝛾 is infeasiblethen 
6:      𝛾step = 𝛾step/2 
7:   else 
8:       𝐕0 = 𝐕𝑘, 𝛾feasible = 𝛾, 𝛾step = 𝛾/2 
9:    end if 
10: until 𝛾step < 0.05 
11: 𝛾min = 𝛾feasible  
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We should note that the keypoint correspondences may still contain outliers even though 
most of them have been removed in the initialization step. As [34], If 𝛾min is more than 2 
pixels, we throw out the set of keypoint correspondences whose reprojection error equals 
𝛾min and redo Algorithm 2 and 3 until 𝛾min is less than 2 pixels. Fig. 4(b) shows an 
example of a final recovered mesh generated by refining the initial mesh 𝐕0 in Fig. 4(a). As 
we can see, the overall shape of 𝐕0 has been adjusted to a quite acceptable position after the 
iterative refinement process. 
 

 
(a) An initial mesh 𝐕0 generated by the linear initialization method. 

 

 
(b) The final reconstructed mesh generated by refining the initial mesh 𝐕0 

 
Fig. 4. Mesh initialization and refinement. In both (a) and (b), on the left is the original image with 

reprojected mesh and on the right is the mesh seen from a different view. 

5. Experimental Results 
The performance of our algorithm was evaluated with both synthetic and real data. All the 
experiments are implemented under the Matlab environment and SeDuMi[35] is used as the 
LP solver. 

5.1 Synthetic Data 
A 8cm×11cm triangulated mesh is used as the synthetic data. We apply forces to certain 
vertices of this 88-vertex mesh and keep mesh edges to be their original lengths, which 
generates two 50-frame synthetic sequences. Synthetic sequence 1 is a smoothly deformed 
mesh, synthetic sequence 2 is a mesh with sharp folds, and synthetic sequence 3 is a mesh 
with complex (local) deformations. We randomly choose four 3D points in each facet of the 
mesh and project these points on an image plane using a perspective projection matrix, 
which gives us a set of 3D-to-2D point correspondences at each frame. 

For comparison, Salzmann et al.'s method [14], Chhatkuli et al.’s method [28], Perriollat et 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                   3133 

al.'s method [23] and Matlab's constrained optimization function,fmincon, were also used for 
the synthetic data. 

1)Salzmann et al.'s method [14] is a recursive method, that is, the structure recovered in 
the previous frame would be used in current frame, thus the surface structure for the first 
frame should be given in advance. In the experiments, the ground-truth of the first frame is 
used as the initial structure when we use the method in [14]. 

2)Chhatkuli et al.’s method [28] is able to recover the structure of an isometric surface 
from a single image as ours. This method uses the two-fold non-holonomic solution 
todepth-gradient, and is considered as state-of-the-art single view deformable reconstruction 
method currently. 

3) Perriollat et al.'s method [23] has two steps. In the first step, a suboptimal solution is 
computed by using pairwise constraints. In the second step, an iterative refinement process 
considers the upper bounds as a whole and tunes all of them to get a fully compatible set of 
bounds. We should note that our method uses the idea that is similar with the first step of [23] 
to generate an initial mesh 𝐕0, as described in Section 4.1. 

4) Matlab's constrained optimization function, fmincon, can handle non-convex constraints. 
When using fmincon for surface reconstruction, we design the objective function in fmincon 
as the sum of square of keypointreprojection errors, and design the constraint functions to 
retain original lengths of mesh edges. fmincon needs an initial structure for each frame, and 
we set the initialization as the flat position. 
 
Experiment I. In the first experiment, we evaluate the robustness of five different methods 
to noise. For this experiment, we add Gaussian noise with mean zero and variance one and 
two to all the image point locations at each frame. Fig. 5 shows the average 3D distance 
between reconstructed mesh vertices and the ground-truth of each frame for different noise 
levels. Fig. 6 shows some reconstruction results using five different methods when adding 
Gaussian noise with variance two. 

The results show that our approach gives more stable and accurate results compared with 
the other three methods. Though less accurate than ours, Chhatkuli et al.’s method [28] also 
generates quite acceptable results. Salzmann et al.'s method [14] becomes worse in the 
second half of the sequence 2 and 3. This is because the recursive nature of [14] makes it 
only applicable for the tracking context, which means it cannot reconstruct the surface from 
a single image. Perriollat et al.'s method [23] performs less accurate than our method, 
Chhatkuli et al.’s method and Salzmann et al.'s method for sequence 1, but outperforms the 
method in [14] at the end of sequence 2 and 3. The fmincon function always get trapped in 
local minimum and gives unacceptable structures due to the non-convexity of the 
corresponding optimization problem. Furthermore, fmincon function takes about 30 minutes 
to process one frame as opposed to 10 seconds of our approach, 4 seconds of Salzmann et 
al.'s method [14], 5 seconds of Chhatkuli et al.’s method [28], and 3 seconds of Perriollat et 
al.'s method [23] on a 3GHz standard PC. 
 
Experiment II. In the second experiment, we evaluate the robustness of five different 
methods to outliers. For this experiment, we first add Gaussian noise with mean zero and 
variance two to all the image point locations, and then add Gaussian noise with mean zero 
and variance ten to 30% and 60% of the image point locations respectively which can be 
regarded as outliers. Fig. 7 shows the average 3D distance between reconstructed mesh 
vertices and the ground-truth of each frame using five different methods. 

The results show that the fmincon function is extremely sensitive to outliers and its 3D 
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error quickly exceeds the scope of the graph. As outliers increase, Perriollat et al.'s method 
[23] biases toward the ground-truth quickly. We think the reason is that the effectiveness of 
the method in [23] is based on perfect keypoint correspondences, thus it becomes worse 
when adding large outliers. Salzmann et al.'s method [14], Chhatkuli et al.’s method [28] and 
ours are all robust in dealing with large outliers, and our methods again performs much more 
stable and accurate than others, especially on synthetic sequence 3. 
 

 
(a) Sequence 1, σ = 1                        (b) Sequence 1, σ = 2 

 

 
(c) Sequence 2, σ = 2                        (d) Sequence 2, σ = 2 

 

 
(e) Sequence 3, σ = 1                        (f) Sequence 3, σ = 2 

 
Fig. 5. Average 3D distance between reconstructed mesh vertices and the ground-truth using five 

different methods for each frame of the synthetic data. (a)and (b) are the results of synthetic sequence 
1 when adding Gaussian noise with variances one and two respectively. (c) and (d) are the results of 

synthetic sequence 2.(e) and (f) are the results of synthetic sequence 3. In all the graphs, results 
obtained by the proposed method are shown in solid red, results obtained by Salzmann et al.'s 

recursive method [14] are shown in dash-dotted blue, results obtained by Chhatkuli et al.’s method [28] 
are shown in dashed purple,results obtained by Perriollat et al.'s method [23] are shown in dotted 

black, and results obtained by Matlab's fmincon function are shown in dashed green. 
 

frame
5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

m
es

h 
3D

 e
rro

r (
cm

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 proposed method
Salzmann et al.
Chhatkuli et al.
Perriollat et al.
fmincon

frame
5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

m
es

h 
3D

 e
rro

r (
cm

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 proposed method
Salzmann et al.
Chhatkuli et al.
Perriollat et al.
fmincon

frame
5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

m
es

h 
3D

 e
rro

r (
cm

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 proposed method
Salzmann et al.
Chhatkuli et al.
Perriollat et al.
fmincon

frame
5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

m
es

h 
3D

 e
rro

r (
cm

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 proposed method
Salzmann et al.
Chhatkuli et al.
Perriollat et al.
fmincon

frame
5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

m
es

h 
3D

 e
rro

r (
cm

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 proposed method
Salzmann et al.
Chhatkuli et al.
Perriollat et al.
fmincon

frame
5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

m
es

h 
3D

 e
rro

r (
cm

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 proposed method
Salzmann et al.
Chhatkuli et al.
Perriollat et al.
fmincon

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                   3135 

 
(a) Reconstruction by the proposed method 

 
(b) Reconstruction by Salzman et al.’s method 

 

 
(c) Reconstruction by Chhatkuli et al.’s method 

 

 
(d) Reconstruction by Perriollat et al.’s method 

 

 
(e) Reconstruction by Matlab’sfmincon function 

 
Fig. 6. Some reconstruction results of the synthetic data using five different methods, when adding 

Gaussian noise with mean zero and variance two. In all the graphs, the reconstructed mesh is shown in 
solid red, and the ground-truth is shown in dashed blue. 
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(a) Sequence 1, σ = 10, 30%                     (b) Sequence 1, σ = 10, 60% 

 
(c) Sequence 2, σ = 10, 30%                     (d) Sequence 2, σ = 10, 60% 

 
(e) Sequence 3, σ = 10, 30%                     (f) Sequence 3, σ = 10, 60% 

 
Fig. 7. Average 3D distance between reconstructed mesh vertices and the ground-truth using five 

different methods for each frame of the synthetic data. (a) and (b) are the results of synthetic sequence 
1 when first adding Gaussian noise with mean zero and variance two to all the image point locations, 
and then adding Gaussian noise with mean zero and variance ten to 30% and 60% of the image point 
locations respectively. (c) and (d) are the results of synthetic sequence 2.(e) and (f) are the results of 

synthetic sequence 3.In all the graphs, results obtained by the proposed method are shown in solid red, 
results obtained by Salzmann et al.'s recursive method [14] are shown in dash-dotted blue, results 

obtained by Chhatkuli et al.’s method [28] are shown in dashed purple,results obtained by Perriollat et 
al.'s method [23] are shown in dotted black, and results obtained by Matlab's fmincon function are 

shown in dashed green. 

5.2 Real Data 
Our approach is qualitatively evaluated on real images. We use three objects for experiments: 
a paper sheet, a piece of cloth and a bed-sheet. For each object, we capture an image 
sequence using a calibrated camera with a resolution of 1024×768. The keypoints on the 
mesh and their barycentric coordinates are extracted from a reference image in which the 
surface is in front of the camera without deformations. Then the 3D-to-2D keypoint 
correspondences are established between the reference image and the input one using SIFT 
[36]. We should note that, even though our approach is applied for image sequences, there is 
no linking between two consecutive frames. 
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Fig. 8. Reconstruction of a paper sheet with smooth deformations. The top row are the original images 
with reprojected mesh. The middle row are the reconstructed meshes seen from a different view. The 

bottom roware images of another camera with reprojected mesh. 
 

 
 

Fig. 9. Reconstruction of a paper sheet with sharp folds. The top row are the original images with 
reprojected mesh. The middle row are the reconstructed meshes seen from a different view. The 

bottom row are images of another camera with reprojected mesh. 
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Fig. 10. Reconstruction of a piece of cloth. The top row are the original images with reprojected mesh. 
The middle row are the reconstructed meshes seen from a different view. The bottom row are images 

of another camera with reprojected mesh. 
 

 
 
Fig. 11 Reconstruction of a bed-sheet. The top row are the original images with reprojected mesh. The 

middle row are the reconstructed meshes seen from a different view. The bottom row are images of 
another camera with reprojected mesh. 

 
Some reconstruction results are shown in Fig. 8 to Fig. 11. The results show that our 

approach can correctly recover 3D structures of surfaces with smooth, sharp and other 
complex deformations. The reprojection of the recovered mesh fits the original image very 
well (the first rows in the results), and the 3D shape of the mesh is quite reasonable since all 
the mesh edges retain their original lengths (the second rows in the results). Even projecting 
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the mesh to a image taken from another view, they are also closely matched (the third rows 
in the results). 

We also qualitatively evaluatedthe proposedmethod on the public available deformable 
reconstruction dataset used in [14] and [22]. This dataset contains deformable objects with 
different types of motions and materials.Some reconstruction results of our method are 
shown in Fig. 12.The results show that the proposed approach could correctlyrecovered the 
3D shapes of surfaces with different types ofdeformations and materials. 

 
Fig. 12. Some reconstruction results of the public availabledataset used in [14,22]. The top row are the 
original images.The middle row areimages with reprojected mesh. The bottom row arereconstructed 

meshes seen from a different view 

6. Conclusions 
In this paper we present a method for 3D shape recovery of inextensible deformable surfaces. 
In our approach, the reconstruction problem is formulated as a sequence of LP problems. The 
LP problem consists of data constraints which are 3D-to-2D keypoints correspondences and 
shape constraints which are designed to retain original lengths of mesh edges. A closed-form 
linear method is used to generate an initial structure, and then the structure is refined by 
solving the LP problem iteratively. Compared with previous methods, our approach involves 
neither smoothness constraints nor temporal consistency, which enables us to reconstruct 
structures of surfaces with various kinds of deformations from a single image. 

In future work, we will investigate how to involve the other image cues, such as edges or 
lighting, into our framework in order to increase the robustness of our method to occlusions. 
Besides, our future work also includes investigating how to extend our method to handle 
extensible deformable surfaces. 
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