• Title/Summary/Keyword: Linear assignment problem

Search Result 84, Processing Time 0.021 seconds

An inverse LQG/LTR problem applied to the vehicle steering system

  • Park, Yong-Woon;Kim, Dae-Hyun;Scott, Kimbrough
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.324-327
    • /
    • 1996
  • This paper describes the robust controller design methods applied to the problem of an automatic system for tow-vehicle/trailer combinations. This study followed an inverse Linear Quadratic Regulator(LQR) approach which combines pole assignment methods with conventional LOR methods. It overcomes two concerns associated with these separate methods. It overcomes the robustness problems associated with pole placement methods and trial and error required in the application of the LQR problem. Moreover, a Kalman filter is used as the observer, but is modified by using the loop transfer recovery (LTR) technique with modified transmission zero assignment. The proposed inverse LQG,/LTR controllers enhances the forward motion stability and maneuverability of the combination vehicles. At high speeds, where the inherent yaw damping of the vehicle system decreases, the controller operates to maintain an adequate level of yaw damping. At backward moton, both 4WS (2WS tow-vehicle, 2WS trailer) and 6WS (4WS tow-vehicle, 2WS trailer) control laws are proposed by using inverse LQG/LTR method. To evaluate the stability and robustness of the proposed controllers, simulations for both forward and backward motion were conducted using a detailed nonlinear model. The proposed controllers are significantly more robust than the previous controllers and continues to operate effectively in spite of parameter perturbations that would cause previous controllers to enters limit cycles or to loose stability.

  • PDF

A Lagrangian Relaxation Method for Parallel Machine Scheduling with Resource Constraints

  • Kim, Dae-Cheol
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.65-75
    • /
    • 1998
  • This research considers the problem of scheduling jobs on parallel machines with non-common due dates and additional resource constraints. The objective is to minimize the total absolute deviation of job completion times about the due dates. Job processing times are assumed to be the same. This problem is motivated by restrictions that occur in the handling and processing of jobs in certain phases of semiconductor manufacturing and other production systems. We examine two problems. For the first of these, the number of different types of additional: resources and resource requirements per job are arbitrary. The problem is formulated as a zero-one integer linear programming and the Lagrangian relaxation approach is used. For the second case, there exists one single type of additional resource and the resource requirements per job are zero or one. We show how to formulate the problem as an assignment problem.

  • PDF

A Branch-and-Price Algorithm for the Bandwidth Packing Problem (대역폭 분할 문제를 위한 Branch-and-Price 알고리듬)

  • Kim Deokseong;Lee Kyungsik;Park Sungsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.381-385
    • /
    • 2003
  • We consider the bandwidth parking problem arising from telecommunication networks The problem is to determine the set of calls to be routed and an assignment or them to the paths in arc capacitated network. The objective is to maximize profit. We formulate the problem as an integer programming and propose an algorithm to solve it. Column generation technique to solve the linear programming relxation is proposed with two types of columns in addition, to obtain an optimum integer solution, we consider a new branching strategy. Computational experiments show that the algorithm gives option at solutions within reasonably small time limits.

  • PDF

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 저차제어기의 설계: 특성비지정 접근법)

  • Hua, Jin Li;Lee, Kwan-Ho;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.158-160
    • /
    • 2005
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTD plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller and furthermore. the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

  • PDF

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 3-파라미터 제어기의 설계: 특성비지정 접근법)

  • Jin Li-Hua;Lee Kwan-Ho;Kim Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.20-23
    • /
    • 2006
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTI) plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with the specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller. Furthermore, the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

Minimum Crosstalk Layer Assignment for Three Layers Gridded Channel Routing (삼층 그리드 채널 배선을 위한 최소 혼신 배선 층 할당 방법)

  • Jhang, Kyoung-Son
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2143-2151
    • /
    • 1997
  • As inter-wire spacing on a VLSI chip becomes smaller with the evolution of VLSI fabrication technology, coupling capacitance between adjacent wires is increasing rapidly over ground capacitance. Therefore, it becomes necessary to take into account the crosstalk caused mainly by coupling capacitance during the layout design of VLSI systems. This paper deals with layer assignment problem to minimize crosstalk in three layers gridded channel routing. The problem is formulated in 0/1 integer linear programming style. Upper bound for cost function is estimated for the fast termination. Experiment shows the effectiveness of our approach to minimize crosstalk.

  • PDF

A Group Decision Model for Selecting Facility Layout Alternatives

  • Lin, Shui-Shun;Chiou, Wen-Chih;Lee, Ron-Hua;Perng, Chyung;Tsai, Jen-Teng
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.82-93
    • /
    • 2005
  • Facility layout problems (FLP) are usually treated as design problems. Lack of systematic and objective tools to compare design alternatives results in decision-making to be dominated by the experiences or preferences of designers or managers. To increase objectivity and effectiveness of decision-making in facility layout selections, a decision support model is necessary. We proposed a decision model, which regards the FLP as a multi-attribute decision making (MADM) problem. We identify sets of attributes crucial to layout selections, quantitative indices for attributes, and methods of ranking alternatives. For a requested facility layout design, many alternatives could be developed. The enormous alternatives, various attributes, and comparison of assigned qualitative values to each attribute, form a complicated decision problem. To treat facility layout selection problems as a MADM problem, we used the linear assignment method to rank before selecting those high ranks as candidates. We modelled the application of the Nemawashi process to simulate the group decision-making procedure and help efficiently achieve agreement. The electronics manufacturing service (EMS) industry has frequent and costly facility layout modifications. Our models are helpful to them. We use an electronics manufacturing service company to illustrate the decision-making process of our models.

Maximum Options-Equiped Class First-Production Algorithm for Car Sequencing Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.105-111
    • /
    • 2015
  • This paper suggests O(n) linear-time algorithm for car sequencing problem (CSP) that has been classified as NP-complete because of the polynomial-time algorithm to solve the solution has been unknown yet. This algorithm applies maximum options-equiped car type first production rule to decide the car sequencing of n meet the r:s constraint. This paper verifies thirteen experimental data with the six data are infeasible. For thirteen experimental data, the proposed algorithm can be get the solution for in all cases. And to conclude, This algorithm shows that the CSP is not NP-complete but the P-problem. Also, this algorithm proposes the solving method to the known infeasible cases. Therefore, the proposed algorithm will stand car industrial area in good stead when it comes to finding a car sequencing plan.

Simple Solution for Multi-commodity Transportation Problem (복합상품 운송 문제의 간단한 해법)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.173-181
    • /
    • 2013
  • This paper proposes a heuristic optimal solution of multicommodity transportation problem. The proposed algorithm has 3 steps. First the proposed algorithm transforms multicommodity transshipment problem to a general transportation problem, but if the problem is a multicommodity transportation problem, it is not transformed. And the multicommodity is disassembled to a single commodity. Second if it is a multicommodity transportation problem, the algorithm selects the minimum cost according to commodity, on the other hand if it is a multicommodity transshipment problem, the algorithm directly selects the minimum cost based on demand area. And the algorithm assigns carloadings to be satisfied the supply and demand quantity. The algorithm repeats these processes until a given demand quantity is satisfied. Last if it has a condition that is able to reduce the transportation expense, the proposed algorithm controls the assignment quantity of the initial value that got from the step 2. The proposed algorithm was applied to two multicommodity transportation problem and three multicommodity transshipment problem and it got more good result than an existing linear programming method.

Design of a High-Speed Data Packet Allocation Circuit for Network-on-Chip (NoC 용 고속 데이터 패킷 할당 회로 설계)

  • Kim, Jeonghyun;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.459-461
    • /
    • 2022
  • One of the big differences between Network-on-Chip (NoC) and the existing parallel processing system based on an off-chip network is that data packet routing is performed using a centralized control scheme. In such an environment, the best-effort packet routing problem becomes a real-time assignment problem in which data packet arriving time and processing time is the cost. In this paper, the Hungarian algorithm, a representative computational complexity reduction algorithm for the linear algebraic equation of the allocation problem, is implemented in the form of a hardware accelerator. As a result of logic synthesis using the TSMC 0.18um standard cell library, the area of the circuit designed through case analysis for the cost distribution is reduced by about 16% and the propagation delay of it is reduced by about 52%, compared to the circuit implementing the original operation sequence of the Hungarian algorithm.

  • PDF