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Abstract
We consider the bandwidth packing problem arising
from telecommunication networks. The problem is to
determine the set of calls to be routed and an
assignment of them to the paths in an arc capacitated
network. The objective is to maximize profit.

We fomulate the problem as an integer
programming and propose an algorithm to solve it.
Column generation technique to solve the linear
programming relaxation is proposed with two types
of columns. In addition, to obtain an optimum integer
solution, we consider a new branching strategy.
Computational experiments show that the algorithm
gives optimal solutions within reasonably small time
limits.

1. Introduction

We consider the bandwidth packing problem (BWP),
which was first introduced by Cox et al. (1991). This
problem occurs in the area of telecommunications. Tt
is defined in terms of an arc-capacitated undirected
network with a unit flow cost on each arc. When we
are given a set of calls with their revenues and static
bandwidth requirements, we need to select a subset of
calls to be routed and assign them to node-simple
paths with the objective of maximizing profit
(Laguna and Glover 1993).

To solve this problem, several researches have
been performed. Laguna and Glover (9993} and
Anderson et al. (1993) developed a tabu search
method to solve the problem. In addition, Laguna and
Glover (1993) proposed an integer programming (IP)
formulation of the problem and solved some
instances using a commercial optimization package.
According to their report, IP approach using a
commercial optimization package is not practical
since it takes too much CPU time to solve the
(restricted) IP formulation.
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Parker and Ryan (1994) proposed a delayed
column generation algorithm to solve the problem
without any use of cutting plane. To obtain an integer
solution, they used a branch-and-price technique with
a branching strategy different from us. They reported
that their algorithm could find near optimal solutions
within small time bound.

Park et al (1996) proposed an integer
programming approach to solve the problem. They
used the delayed column generation technique and
strong cutting plane (row) generation technique
together to strengthen the LP relaxation of the
problem. To obtain an integer optimal solution, they
used branch-and-bound and branch-and-cut technique
with anther branching strategy different from us.

In this study, we use the delayed column
generation technique to solve the linear programming
relaxation of the problem as above, but with two
different kinds of column types. This approach
strengthens the LP relaxation bound at least as tight
as strong cutting plane approach. When the approach
fails to obtain an integer solution, we use the branch-
and-price approach as similar to above approaches.
During the branching stage, we also apply the column
generation approach. In addition, we propose another
branching strategy different from the approaches of
the above researches.

We test the procedure on several problem
instances. The sizes of test problem are comparable
to those used in Laguna and Glover (1993) and Park
et al (1996). The results show that our approach
performs very well to find the optimal solutions
within small time limits.

The paper is structured as follows. Section 2
presents the formulation of the problem. In section 3,
we present the column generation procedure. Section
4 describes the overview of our algorithm.
Computational results are shown in section 5. Finally,
conclusions are given in Section 6.
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2. Formulation

In this section, we present the formulation of BWP.
Given an arc-capacitated network G =(V,E), the
set of calls, the bandwidth requirement for each call,
and the revenue associated to each call, BWP finds
the set of calls and an assignment of the selected calls
to the paths in the network to maximize profit while
satisfying the bandwidth capacity restrictions on each
arc.

First, we give some notations to be used in the
formulation of the problem.

Notation

V :set of nodes,

F :set of arcs,

K : set of candidate calls,

P(k): set of (s, t)-paths, where s is the source and ¢t is
the destination of call &, where ke X,

P(k;e) : set of paths in P(k) that pass through arcs
e,where ec £ and ke X,

E(p): set of arcs of which path p consists,

¢, : cost of the unit flow on arc e, forall ec E,

b, : capacity of arc e, where ec £,

v, :revenue of call &k, where ke K,

7, : bandwidth requirement of callk , where ke X,

Additionally, we define a concept of a call-set
pattern. A call-set pattem is a grouping configuration
of calls that paths though an arc ¢ and satisfies
bandwidth capacity restriction on the arc e Let
K(g) be the set of calls of call-pattem g. Then g

consists of the set X(g) of calls that satisfy
Zrekig)te Sb, forarc e, where ec E. Let G(e)

be the set of call-set pattems for arc ec £ and
G(e; k) be the set of call-set patterns in G(e) that

contain call & Then, we can formulate BWP using
above notations as follows:

(MP)
k_k
max 2 pryp
keK pe (k)
st k<1 Vkek )
PpeP(R)
> z$ <1, Veck (2)
geGle)
Syh< 3z, VeeE N keK(3)
PeP(k,e)  geGle k)

z8 €{0,1},V ge G(e),V ec E,
Yee{01}, V pe P(k), ke K.
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k = —
where w, = v, ¥ o Lec E(p)Ce -

Without of loss of generality, we assume all

data are integral. Note that wl;

if we select call k£ and assign it to path p. The decision

is the profit obtained

variable yf, is 1 if call & is chosen and assigned to

path p, 0 otherwise. The decision variable z§is 1, if

call-set pattern g is selected on arc e, 0 otherwise.
Constraints (1) ensure that at most one path can be
selected. Constraints (2) ensure that at most one call-
set pattem can be selected for each arc. Constraints
(3) mean that call & can path through arc e of
path p if call-set pattern g, containing call %, is
selected for arc e.

The bandwidth packing problem is NP-hard.
This can be seen by reducing a 0-1 knapsack problem
to a bandwidth packing problem. For more details of
reducing, refer Parker and Ryan (1994).

Generally, there are an exponential number of
paths and an exponential number of call-set pattems
for MP. It is thus impractical to enumerate all the
possible paths and call-set pattern to solve LP
relaxation of MP with all the decision variables at
hand. However, LP relaxation of MP can be solved
efficiently by using the column generation technique
of Gilmore and Gomory (1961). For more details of
this method, refer to Gilmore and Gomory (1961) and
Bamhart et al (1998).

3. Column Generation Problems

In this section, we give an explanation of column
generation problems and the comresponding
algorithms to solve the problems. Let MPL be the LP
relaxation of MP.

Let U be the union of all possible paths
( P=UpyxP(k) ) and call-set patterns
( G=U.pG(e)). We assume that a subset U’ of
the set U is given. Replacing U by U’ in MPL
yields the restricted linear programming MPL "~ whose
solutions are suboptimal to MPL. Then, using the
optimal dual solution returned by the simplex method
in the current MPL’, we search for profitable
columns whose addition to MPL’ may result in an
increase of the optimal objective value of MPL". If
there are no such columns, the solution at hand is an
optimal solution to MPL. Otherwise, we add the
column to MPL’, and then repeat the above process.

Now, we mention how to find the profitable
columns. Given a feasible basis to MPL, we need to

generate columns to enter the basis. Let (@, £, 7)
be the optimal solution of the dual problem of MPL".

Then, we may write the optimality condition for MPL
as follows:
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min{ Y7 -wh|peP}>-7, 4)
ee E(p)
max{ Y 7;|g€G }<p, )
keK(g)

Using condition (4), we can derive the first
column generation problem (SP1) associated to call £.
The problem finds the shortest path from node s to
node t, where s is the source and ¢ is the destination
of call % respectively. Since the arc weights are
nonnegative, SP1 can be solved efficiently by
Dijkstra’s algorithm (Bondy and Murty 1976). If the
resulting length of the shortest path is less than ~&T, ,

the path can be added to the current formulation.
Otherwise, no column is generated with respect to
call &

Using condition (5), we can derive the second
column generation problem (SP2) associated to arc e.
The problem is a 0-1 knapsack problem for the arc e.
The problem can be solved using dynamic
programming (Nemhauser and Wolsey 1988) with
time complexity O(nb) where n is the number of

variables and b is the capacity of the knapsack. If
the resulting weight of the knapsack is greater than

,Ee , the call-pattem can be added to the cument

fomulation. Otherwise, no column is generated with
respect to arc e.

4. Overall Algorithm
4.1 Overview

In this section, we give a brief and overall
explanation of our algorithm. First, we construct
initial formulation of MPL without constraints (3),
which we call INIT.

After solving the initial INIT, we decide if
constraint (4) is satisfied. If it is not, new columns for
path variables are generated and added to INIT. If the
present solution satisfies constraint (4), i.e., no more
columns for path variables need to be added to INIT,
we proceed to find a subset of constraints (3) to be
added if some violated inequalities are found by the
curent fractional solution. In this way, the
augmented formulation ALP has been obtained.

After getting ALP, we solve ALP and decide if
the constraint (5) is satisfied. If it is not, new columns
for call set-patterns are generated and added to ALP.
If the present solution satisfies constraint (5), no
more columns for call set-patterns needs to be added
to INIT.

Then, we go though the same procedure as we
do after the initial formulation of MPL is obtained. If
the solution of ALP is dual feasible, we generated
needed columns until it is optimally solved.

When no more columns can be generated, we
check if the solution obtained by solving the last LP
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is integral. If we have obtained an integral solution,
we are done with an optimal solution of BWP.
Otherwise, we have to initiate the branch-and-price
procedure to find an integer optimal solution.

4.2 Branching Strategy

As the branching rule of this problem, we may
consider about 3 kinds of rules. The first rule is that
of Parker and Ryan (1994). And the second rule is
that of Park et al. (1996). The third is as follows.

Qur branching rule consists of 2 stages. In the
first stage, we decide whether to select a call or not
for each call that takes on fractional value. In the
second stage, we select the path of the call whose
flow on the network is split in any links. For the
selection of the path, we modified the branching rule
of Bahnhart et al. (2000) to be used in the undirected
network model,

5. Computational Results

We tested the proposed algorithm on some randomly
generated problems. The underlying networks are
devised to reflect the characteristics of the realistic
telecommunication networks according to the
remarks shown in Anderson et al. (1993). In the
following, we mention the characteristics of the
general problems and then show the computational
results.

5.1 Problem Characteristics

The nodes of a generated network are chosen
randomly in two-dimensional FEuclidean plane
50x 50. These nodes are connected by arcs which are
chosen randomly. The arcs are chosen such that
nearer nodes are more likely to be connected than
distant nodes (Anderson et al, 1993). All of the
networks are generated as above such that it satisfies
the factor of connectivity.

For each network, we generated 10 problem
instances of BWP that have different arc capacities
and call tables. The capacities of the arcs are
randomly chosen in the range from 10 to 50. Call
tables are also randomly generated. Each call has an
origin, a destination, a bandwidth requirement, and
revenue. Bandwidth requirement of each call was
generated between 1 and 20. We managed revenue of
a call to be from 100 to 1000 in scale of tens. The
calls are randomly generated among all possible pairs
of nodes. The number of calls is also randomly
determined, proportional to the sizes of the network
considered. The bandwidth requirement for each call
is generated so that not all the calls can be selected.

For computational test, we used CPLEX callable
library version 6.6 as an LP solver. The LP solution
routine and the other routines for adding inequalities,
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adding columns, and changing bounds of variables
are used.

In the next section, we present the performance
of the proposed algorithm on the test problems.

5.2 Computational Results

The computational results on 2 networks are
summarized in table 1-2.

Table 1. Computational Results on Network (30, 50)
#con 42 5% 4BB Time

()
100 543 1799 4100 1297 045 218 1058

No #Call #C1 #C2

—

2 102 335 688 3570 333 015 10 1351
3 94 221 346 2914 189 005 22 505
4 84 177 251 2772 95 008 2 208
5 93 208 398 2790 328 021 34 707
6 99 216 286 3366 126 009 6 3.56
7 103 191 145 3193 49 0 0 124
3 84 120 152 1832 73 01 4 103
9 77 173 380 2310 285 072 42 5.16
10 79 188 249 3002 56 013 2 148
Avg 915 2372 4694 2995 283 02 34 146

Max 103 543 1799 4100 1297 072 218 1058
Min 77 120 145 1932 49 0 0 103

Table 2. Computational Results on Network (35, 85)

No #Call #C1 #C2 #CON #LP g/:f)’ #BB  Time

12 504 820 6720 296 011 22 2524

—_

2 120 626 1637 8040 1379 0.28 252 1643
3 104 336 432 4992 156 021 4 719
4 1 525 853 6882 218 0.04 8 2587
5 113 401 629 6554 270 0.09 24 1754
6 92 205 157 3404 109 004 12 259
7101 289 397 4141 344 011 46 1134
8 101 316 284 4444 38 0 0 354
9 113 5% 1305 6441 450 032 42 64.97
10 98 414 592 5586 256 025 20 1357

Avg 1065 4212 7166 5720 357 0.14 43 3361
Max 120 626 1697 8040 1379 032 252 1643
Min 92 205 157 3404 88 0 0 259

In those tables, the headings #Call, #C1, #C2,
#CON and #LPs refer to the number of calls, the
number of generated columns of type 1, the number
of generated columns of type 2, the number of
constraints added from the constraints (3), and the
number of calls to LP solver in the algorithm,
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respectively. All data are accumulated up to the end
of the whole procedure. Let LP denote the objective
value obtained by solving the final linear
programming formulation before the branch-and-
price procedure and OPT denote the value of the
optimal integer solution. Gap(%s) is defined as follow:

LP-OPT
—_—x

Gap (%)= OPT

100.

The headings #BB refer to the numbers of nodes
generated in the branch-and-price procedure. Finally,
Time refer to the accumulated execution times in
seconds needed to solve the problem until branch-
and-price procedure. All problems are solved on
Pentium PC (866MHz).

Note that the number of columns of type 1
generated in the procedure does not exceed 4 times
the number of calls in average. The number of
columns of type 2 generated does not exceed twice
the number of columns of type 1 in average.

The column Gap(%) shows that our proposed
model gives tight bound in the LP relaxation model.
The column #BB shows that it does not exceed 100 in
the number of enumeration nodes in average.

6. Conclusions

In this paper, we proposed an algorithm to solve the
bandwidth packing problem. We used the delayed
column generation technique with two kinds of
column types. The technique has been used to solve
the LP relaxation of the problem efficiently. In the
algorithm, we also consider a new branching rule to
obtain an integer optimal solution.

The computational results showed that the
proposed algorithm gives optimal solutions in small
running time.

The approach used in this paper may be applied
to other potential applications in telecommunication
network design or path or route selection in the
capacitated network.
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