• Title/Summary/Keyword: Linear assignment problem

Search Result 84, Processing Time 0.026 seconds

Robust Pole Assignment of Uncertain Linear Systems (불확정성 선형 시스템의 강인 극점 배치)

  • Kim, Jae-Seong;Kim, Jin-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.183-190
    • /
    • 2000
  • It is well-known that the poles of a system are closely related with the dynamics of the systems, and the pole assignment problem, which locates the poles in the desired regions, in one of the major problem in control theory. Also, it is always possible to assign poles to specific points for exactly known linear systems. But, it is impossible for the uncertain linear systems because of the uncertainties that originate from modeling error, system variations, sensing error and disturbances, so we must consider some regions instead of points. In this paper, we consider both the analysis and the design of robust pole assignment problem of linear system with time-varying uncertainty. The considered uncertainties are the unstructured uncertainty and the structured uncertainty, and the considered region is the circular region. Based on Lyapunov stability theorem and linear matrix inequality(LMI), we first present the analysis result for robust pole assignment, and then we present the design result for robust pole assignment. Finally, we give some numerical examples to show the applicability and usefulness of our presented results.

  • PDF

An Linear Bottleneck Assignment Problem (LBAP) Algorithm Using the Improving Method of Solution for Linear Minsum Assignment Problem (LSAP)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2016
  • In this paper, we propose a simple linear bottleneck assignment problems (LBAP) algorithm to find the optimal solution. Generally, the LBAP has been solved by threshold or augmenting path algorithm. The primary characteristic of proposed algorithm is derived the optimal solution of LBAP from linear sum assignment problem (LSAP). Firstly, we obtains the solution for LSAP from the selected minimum cost of rows and moves the duplicated costs in row to unselected row with minimum increasing cost in direct and indirect paths. Then, we obtain the optimal solution of LBAP according to the maximum cost of LSAP can be move to less cost. For the 29 balanced and 7 unbalanced problem, this algorithm finds optimal solution as simple.

Polynomial Time Algorithm for Worker Assignment Problem (작업자 배정 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.159-164
    • /
    • 2022
  • The linear assignment problem (LAP) and linear bottleneck assignment problem (LBAP) has been unknown the algorithm to solve the optimal solution within polynomial-time. These problems are classified by NP-hard. Therefore, we can be apply metaheuristic methods or linear programming (LP) software package or Hungarian algorithm (HA) with O(m4) computational complexity. This paper suggests polynomial time algorithm with O(mn)=O(m2),m=n time complexity to LAP and LBAP. The select-delete method is simply applied to LAP, and the delete-select method is used to LBAP. For the experimental data without the unique algorithm can be apply to whole data, the proposed algorithm can be obtain the optimal solutions for whole data.

Seat Allocation Model for Single Flight-leg using Linear Approximation Technique (선형근사 기법을 이용한 단일비행구간의 좌석할당 모형)

  • Song, Yoon-Sook;Lee, Hwi-Young
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.65-75
    • /
    • 2008
  • Over the last three decades, there are many researches focusing on the practice and theory of RM in airlines. Most of them have dealt with a seat assignment problem for maximizing the total revenue. In this study, we focus on a seat assignment problem in airlines. The seat assignment problem can be modeled as a stochastic programming model which is difficulty to solve optimally. However, with some assumptions on the demand distribution functions and a linear approximation technique, we can transform the complex stochastic programming model to a Linear Programming model. Some computational experiments are performed to evaluate out model with randomly generated data. They show that our model has a good performance comparing to existing models, and can be considered as a basis for further studies on improving existing seat assignment models.

  • PDF

Seat Allocation Model for Single Flight-leg using Linear Approximation Technique (선형근사 기법을 이용한 단일비행구간의 좌석할당 모형)

  • Song, Yoon-Sook;Lee, Hwi-Young;Yoon, Moon-Gil
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.117-131
    • /
    • 2009
  • Over the last three decades, there are many researches focusing on the practice and theory of RM in airlines. Most of them have dealt with a seat assignment problem for maximizing the total revenue. In this study, we focus on a seat assignment problem in airlines. The seat assignment problem can be modeled as a stochastic programming model which is difficulty to solve optimally. However, with some assumptions on the demand distribution functions and a linear approximation technique, we can transform the complex stochastic programming model to a Linear Programming model. Some computational experiments are performed to evaluate out model with randomly generated data. They show that our model has a good performance comparing to existing models, and can be considered as a basis for further studies on improving existing seat assignment models.

[ $H_2$ ]-optimal Control with Regional Pole Assignment via State Feedback

  • Wang Guo-Sheng;Liang Bing;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.653-659
    • /
    • 2006
  • The design of $H_2$-optimal control with regional pole assignment via state feedback in linear time-invariant systems is investigated. The aim is to find a state feedback controller such that the closed-loop system has the desired eigenvalues lying in some desired stable regions and attenuates the disturbance between the output vector and the disturbance vector. Based on a proposed result of parametric eigenstructure assignment via state feedback in linear systems, the considered $H_2$-optimal control problem is changed into a minimization problem with certain constraints, and a simple and effective algorithm is proposed for this considered problem. A numerical example and its simulation results show the simplicity and effectiveness of this proposed algorithm.

An assignment method for part-machine cell formation problem in the presence of multiple process routes

  • Won, You-Kyung;Kim, Sehun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.236-243
    • /
    • 1994
  • In this paper we consider the part-machine cell formation decision of the generalized Group Technology(GT) problem in which multiple process routes can be generated for each part. The existing p-median model and similarity coefficient algorithm can solve only small-sized or well-structured cases. We suggest an assignment method for the cell formation problem. This method uses an assignment model which is a simple linear programming. Numerical examples show that our assignment method provides good separable cells formation even for large-sized and ill-structured problems.

A study on the spectrum assignment problem for a functional linear system (함수선형계의 스펙트럼지정문제에 관한 연구)

  • 이장우
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.209-217
    • /
    • 1982
  • This paper considers a finite spectrum assignment Problem for a functional retarded linear differential system with delays in control only. In this problem, by generalizing from an abstract linear system characterized by Semigroups on a Hilbert space to a finite dimensional linear system, we unify the relationship between a control-delayed system and its non-delayed system, and then by using the spectrum of the generator-decomposition of Semigroup, we try to get a feedback law which yields a finite spectrum of the closed-loop system, located at an arbitrarily preassigned sets of n points in the complex plane. The comparative examinations between the standard spectrum assignment method and the method of spectral projection for the feedback law which consists of proportional and finite interval terms over present and past values of control variables are also considered. The analysis is carry down to the elementary spectral projection level because, in spite of all the research efforts, so far there has been no significant attempt to obtain the feedback implementation directly from the abstract representation forms in the case of multivariables.

  • PDF

Parametric Approaches for Eigenstructure Assignment in High-order Linear Systems

  • Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.419-429
    • /
    • 2005
  • This paper considers eigenstructure assignment in high-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related with a type of so-called high-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically very simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effect of the proposed approaches.

A Linear Approximation Model for an Asset-based Weapon Target Assignment Problem (자산기반 무기할당 문제의 선형 근사 모형)

  • Jang, Jun-Gun;Kim, Kyeongtaek;Choi, Bong-Wan;Suh, Jae Joon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.108-116
    • /
    • 2015
  • A missile defense system is composed of radars detecting incoming missiles aiming at defense assets, command control units making the decisions on weapon target assignment, and artillery batteries firing of defensive weapons to the incoming missiles. Although, the technology behind the development of radars and weapons is very important, effective assignment of the weapons against missile threats is much more crucial. When incoming missile targets toward valuable assets in the defense area are detected, the asset-based weapon target assignment model addresses the issue of weapon assignment to these missiles so as to maximize the total value of surviving assets threatened by them. In this paper, we present a model for an asset-based weapon assignment problem with shoot-look-shoot engagement policy and fixed set-up time between each anti-missile launch from each defense unit. Then, we show detailed linear approximation process for nonlinear portions of the model and propose final linear approximation model. After that, the proposed model is applied to several ballistic missile defense scenarios. In each defense scenario, the number of incoming missiles, the speed and the position of each missile, the number of defense artillery battery, the number of anti-missile in each artillery battery, single shot kill probability of each weapon to each target, value of assets, the air defense coverage are given. After running lpSolveAPI package of R language with the given data in each scenario in a personal computer, we summarize its weapon target assignment results specified with launch order time for each artillery battery. We also show computer processing time to get the result for each scenario.