• Title/Summary/Keyword: Linear assignment method

Search Result 94, Processing Time 0.027 seconds

A Unified Approach to Exact, Approximate, Optimized and Decentralized Output Feedback Pole Assignment

  • Tarokh, Mahmoud
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.939-947
    • /
    • 2008
  • The paper proposes a new formulation of the output feedback pole assignment problem. In this formulation, a unified approach is presented for solving the pole assignment problem with various additional objectives. These objectives include optimizing a variety of performance indices, and imposing constraints on the output feedback matrix structure, e.g. decentralized structure. Conditions for the existence of the output feedback are discussed. However, the thrust of the paper is on the development of a convergent pole assignment algorithm. It is shown that when exact pole assignment is not possible, the method can be used to place the poles close to the desired locations. Examples are provided to illustrate the method.

Eigenstructure Assignment Considering Probability of Instability with Flight Control Application

  • Seo, Young-Bong;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.607-613
    • /
    • 2007
  • Eigenstructure assignment provides the advantage of allowing great flexibility in shaping the closed-loop system responses by allowing specification of closed-loop eigenvalues and corresponding eigenvectors. But, the general eigenstructure assignment methodologies cannot guarantee stability robustness to parameter variations of a system. In this paper, we present a novel method that has the capability of exact assignment of an eigenstructure which can consider the probability of instability for LTI (Linear Time-Invariant) systems. The probability of instability of an LTI system is determined by the probability distributions of the closed-loop eigenvalues. The stability region for the system is made probabilistically based upon the Monte Carlo evaluations. The proposed control design method is applied to design a flight control system with probabilistic parameter variations to confirm the usefulness of the method.

Robust suboptimal regulator design for linear multivariable system

  • Lee, Jae-Hyeok;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.841-846
    • /
    • 1990
  • In this study, a design method to obtain a robust suboptimal regulator for linear multivariable system is presented. This new design method is based on the optimal regulator design method using eigen-structure assignment and it uses additional cost function which represent robustness of the closed loop system. When we design the regulator using pole assignment method for linear multivariable system we have extra degree-of-freedom after assigning desired eigenvalues of the closed loop system in determining the feedback gain. So we assign additional robust suboptimal regulator. In this study we also feedback the system output for more practical applications.

  • PDF

The Robust Servo Controller Design of Magnetic Levitation System Considering Pole Assignment Region (극 배치영역을 고려한 자기 부상계의 로버스트 서보제어기 설계)

  • Kim, C.H.;Jeong, H.J.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.84-91
    • /
    • 2000
  • This paper describes a state feedback controller design method of the integral type magnetic levitation servo system which satisfies the design objectives. The design objective is a $H_{\infty}$ performance, asymptotic disturbance rejection and a robust pole assignment in linear matrix inequality(LMI) region. To the end, we investigated the validity of the designed controller which considering a robust pole assignment region, through results of simulation.

  • PDF

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF

The Assignment-Swap Algorithm for Large-scale Transportation Problem with Incomplete Cost Lists (불완전 비용 리스트를 가진 대규모 수송문제의 배정-교환 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.51-58
    • /
    • 2015
  • This paper suggests assignment-swap algorithm with time complexity O(mn) to obtain the optimal solution for large-scale of transportation problem (TP) with incomplete cost lists. Generally, the TP with complete cost lists can be solved with TSM (Transportation Simplex Method). But, we can't be solved for large-scale of TP with TSM. Especially. It is hard to solve for large-scale TP with incomplete cost lists using TSM. Therefore, experts simply using commercial linear programming package. Firstly, the proposed algorithm applies assignment strategy of transportation quantity to ascending order of transportation cost. Then, we reassign from surplus of supply to shortage of demand. Secondly, we perform the 2-opt and 1-opt swap optimization to obtain the optimal solution. Upon application to $31{\times}15$ incomplete cost matrix problem, the proposed assignment-swap algorithm more improves the solution than LINGO of commercial linear programming.

A Distributed Task Assignment Method and its Performance

  • Kim, Kap-Hwan
    • Management Science and Financial Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-51
    • /
    • 1996
  • We suggest a distributed framework for task assignment in the computer-controlled shop floor where each of the resource agents and part agents acts like an independent profit maker. The job allocation problem is formulated as a linear programming problem. The LP formulation is analyzed to provide a rationale for the distributed task assignment procedure. We suggest an auction based negotiation procedure including a price-based bid construction and a price revising mechanism. The performance of the suggested procedure is compared with those of an LP formulation and conventional dispatching procedures by simulation experiments.

  • PDF

Stability of Switched Linear Systems Using Upper Bounds of Solutions of Lyapunov Matrix Equations (리야프노프 행렬 방정식의 해를 이용한 스위칭 선형시스템의 안정화)

  • Yeom, Dang-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose a novel stability criterion for switched linear systems. The proposed method employs the results on the upper bound of the solution of LME(Lyapunov Matrix Equation) and on the stability of hybrid system. The former guarantees the existence of Lyapunov-like energy functions and the latter shows that the stability of switched linear systems by using these energy functions. The proposed criterion releases the restriction on the stability of switched linear systems comparing with the existing methods and provides us with easy implementation way for pole assignment.

  • PDF

On covariance control theory for linear discrete systems via inverse solution of the Lyapunov matrix equation (Lyapunov 행렬방정식의 역해를 이용한 선형 이산시스템의 공분산제어)

  • Kim, Ho-Chan;Choi, Chong-Ho;Kim, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.443-445
    • /
    • 1998
  • In this paper, an alternate method for state-covariance assignment for SISO(single input single output) linear systems is proposed. This method is based on the inverse solution of the Lyapunov matrix equation and the resulting formulas are similar in structure to the formulas for pole placement. Further, the set of all assignable covariance matrices to a SISO linear system is also characterized.

  • PDF