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ON THE SEPARATION OF

LINEAR CONSTANT-WEIGHT CODES

Zihui Liu

Abstract. By using the finite projective geometry method, the separat-
ing properties of linear constant-weight codes are presented. An algorithm
is given for computing the cardinality of separating coordinate positions
of certain disjoint codeword sets of linear constant-weight codes.

1. Introduction

The separating properties of linear q-ary codes (codes over the finite field
GF (q)) and their applications were first addressed in [2] and [4], where sep-

arating codes were introduced as a type of codes used to realize digital wa-
termarking, and each codeword of a separating code is regarded as a content
assigned to a user (each codeword represent the same content) with an em-
bedded watermark. If a separating code was used in a digital watermarking
system, the security performance of the system was determined by the sep-
arating property of certain codeword sets of the code, and a code is called
separating if the minimum cardinality of separating coordinate positions with
respect to the codeword sets is nonzero. To construct codes with separating
properties and to give judging criterions for the separation are meaningful and
interesting research work [2], [3], [4], and [5].

The value function (also called value assignment) was introduced in [1].
Wood [8] also called it multiplicity function. The value function is an effective
tool to study codes, and we will use it in this paper to address our results.

Definition 1. A value function is a correspondence m(·) : PG(k − 1, q) → Z,
where Z represents the set of integers and PG(k − 1, q) represents a (k − 1)-
dimensional projective space over the finite field GF (q). For any point p ∈
PG(k − 1, q), call m(p) the value of p.

Received February 4, 2015; Revised May 10, 2015.
2010 Mathematics Subject Classification. 94B05.
Key words and phrases. feasible set, separating property, intersection number, value as-

signment, disjoint codeword sets.
This work was supported by The National Science Foundation of China (No. 11171366

and No. 61170257).

c©2016 Korean Mathematical Society

263



264 ZIHUI LIU

Define value of S ⊂ PG(k−1, q) by m(S) =
∑

p∈S m(p). The value function
can determine a linear code up to equivalence in a way as follows: take a point
p ∈ PG(k − 1, q) as a column in a matrix and repeat it m(p) times in the
columns of the matrix, then the code generated by the matrix is determined (up
to equivalence). Conversely, consider the columns of G (with no zero-column),
a generator matrix of a k-dimensional q-ary linear code C, as projective points
in PG(k − 1, q). For a point p ∈ PG(k − 1, q), let m(p) be the number of the
times the point p occurs in the columns of G. We thus obtain a value function
m(·) : PG(k− 1, q) → Z such that m(·) ≥ 0. Note that a linear code may have
many value functions, however, the value function is unique once one fixes a
generator matrix of the code.

Definition 2. A code C determined by a value functionm(·) is called projective
if m(p) ≤ 1, for all p ∈ PG(k − 1, q).

Assume a generator matrix with the value functionm(·) has n columns (thus,
the code C generated by this matrix has length n). Then, m(PG(k − 1, q)) =∑

p∈PG(k−1,q) m(p) = n.

2. The value function and the separation

A code is called t-intersecting if any t nonzero codewords contain some com-
mon nonzero coordinate positions which are called intersection of these t code-
words. The minimum size of intersections among all the possible t nonzero
codewords is called t-intersection number of the code. Obviously, a code is t-
intersecting if and only if its t-intersection number is greater than zero. When
the code is 2-intersecting, the code is briefly called intersecting.

Assume T is a codeword set of a q-ary code C with length n. For any position
i, 1 ≤ i ≤ n, define

Ti = {xi : there exists x = (x1, . . . , xi, . . . , xn) such that x ∈ T }.
The feasible set of T is defined by

F (T ) = {x = (x1, . . . , xi, . . . , xn) ∈ GF (q)n : xi ∈ Ti, for i = 1, . . . , n}.
Definition 3 ([2]). A code C is (t, t′)-separating if, for any pair (T, T ′) of
disjoint codeword sets of C where |T | = t and |T ′| = t′, the feasible sets are
disjoint, that is, F (T ) ∩ F (T ′) = ∅.

Obviously, if a linear code is (t, t′)-separating, then it is also (t′, t)-separating.
For any disjoint codeword sets T and T ′ of C, define θ(T, T ′) = {i | Ti∩T ′

i =
∅}. We call an element of θ(T, T ′) a separating coordinate position of T and T ′.
Denote

θt,t′ = min{|θ(T, T ′)|, for all disjoint codeword sets T, T ′ ⊂ C ,

with |T | = t and |T ′| = t′}.(1)

Then, C is (t, t′)-separating if and only if θt,t′ > 0. Since the operation of
minus a same vector from the vectors in T and T ′ does not change |θ(T, T ′)|, one
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may additionally assume that one of vectors in T or in T ′ is zero vector. Then,
it can be observed that the (t, 1)-separation is equivalent to the t-intersection.

Remark 4. It can be checked that equivalent codes have the same parameter
θt,t′ , and thus have the same separation properties. We may use the value
function to study the separation of codes.

Throughout the paper, if A is a set, then A := {x : x /∈ A}. If G is the
generator matrix (generating a k-dimensional q-ary code C) determined by a
value function m(·) and c ∈ C is a codeword, then one may write

c = vG

for some v ∈ GF (q)k. Define

(2) v⊥ := {p : p ∈ GF (q)k, and (v, p) = 0},
where (v, p) represents the usual inner product of v and p. Note that v⊥ is a
(k − 2)-dimensional subspace when considered as a subset of PG(k − 1, q).

Definition 5. Call the (k−2)-dimensional (projective) subspace v⊥ in (2) the
subspace corresponding to the codeword c.

Obviously, if P corresponds to the codeword c, then m(P ) is exactly the
number of the coordinate positions of c being equal to zero.

We may state the separation of codes in our viewpoint as follows: If

c1 = v1G

c2 = v2G

are two codewords, then the equal coordinate positions of c1 and c2 are those
points p appeared in the columns of G such that

(v1, p) = (v2, p),

or equivalently,

(3) (v1 − v2, p) = 0.

Likewise, the nonequal coordinate positions of c1 and c2 are those points p
appeared in the columns of G such that

(v1, p) 6= (v2, p),

or equivalently,

(4) (v1 − v2, p) 6= 0.

Thus, if we denote S1 the set of points p satisfying (3), and denote S2 the
set of points p satisfying (4), then, according to the viewpoint of value function
m(·), the number of equal coordinate positions of c1 and c2 and the number
of nonequal coordinate positions are m(S1) and m(S2), respectively. Note
also that S1 is exactly the subspace corresponding to the codeword c1 − c2 by
Definition 5.
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In addition, if P1 and P2 correspond to the codewords c1 and c2, respectively,
then m(S) is exactly the size of the intersection of c1 and c2, where S = {p :
p /∈ (P1 ∪ P2)} = P1 ∪ P2. Thus, m(S) = m(PG(k − 1, q) − m(P1 ∪ P2) =
n − m(P1 ∪ P2). Similarly, if the subspaces Pi correspond to the codewords
ci, 1 ≤ i ≤ t, then the size of the intersection of these t codewords is equal to
m(PG(k − 1, q))−m(∪i=t

i=1Pi) = n−m(∪i=t
i=1Pi).

Summing up the text, we get:

Lemma 6. Assume C is a q-ary [n, k] code determined by a value function

m(·). Then, C is (τ, 1)-separating if and only if n −m(∪i=τ
i=1Pi) = m(PG(k −

1, q))−m(∪i=τ
i=1Pi) > 0 for any τ projective subspaces Pi with dimension k− 2,

1 ≤ i ≤ τ .

It is well known that the equation PG(k− 1, q) = ∪i=q+1
i=1 Pi can be achieved

when one chooses the (k−2)-dimensional subspaces Pi, 1 ≤ i ≤ q+1, properly,

and then m(PG(k − 1, q)) −m(∪i=q+1
i=1 Pi) = 0. Thus, if a q-ary code is (τ, 1)-

separating, then τ ≤ q by Lemma 6. In addition, if a code is (t, t′)-separating,
then it is also (u, u′)-separating for any u ≤ t and u′ ≤ t′. These facts yield:

Corollary 7 ([3]). If a q-ary code is (t, t′)-separating, then max{t, t′} ≤ q.

Linear constant-weight codes play an important role in coding theory, and
they have been extensively studied. It was shown in [6] and [7] that the value
function of a constant-weight code takes the same value at each projective point,
namely, m(·) ≡ ι, for some constant ι > 0. Equivalently, a constant-weight code
can be viewed as copies of a simplex code which has value function m(·) ≡ 1.
Obviously, a simplex code is projective. If a simplex code has parameter θt,t′
(see (1)), then the minimum cardinality of separating coordinate positions of
a constant-weight code with m(·) ≡ ι is equal to (θt,t′)ι. Thus, we get:

Lemma 8. A linear constant-weight code has the same (t, t′)-separating prop-

erty as a simplex code for any parameters t and t′.

3. General separation

Cohen [3] has shown that a constant-weight code is (2, 2)-separating. Such
a result can be substantially improved by using our viewpoint in Section 2.

The following lemma is useful.

Lemma 9. Let C be an [n, k] code. If C is (τ, 1)-separating, then it is (t, t′)-
separating for any tt′ ≤ τ .

Proof. Assume G is a generator matrix of C. Let T = {ci : i = 1, . . . , t} and
T ′ = {c′j : j = 1, . . . , t′} be any two disjoint codeword sets, and let

ci = viG, i = 1, . . . , t

c′j = v′jG, j = 1, . . . , t′.
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Assume Pij is the (k − 2)-dimensional subspace corresponding to ci − c′j ,
1 ≤ i ≤ t, 1 ≤ j ≤ t′. Then, according to Definition 5, the statement below
holds.

(vi − v′j , p) = 0 if and only if p ∈ Pij , 1 ≤ i ≤ t, 1 ≤ j ≤ t′.(5)

From (5), we get

|θ(T, T ′)| = m(∪i=t
i=1(∪

j=t′

j=1 Pij))

= m(PG(k − 1, q))−m(∪i=t
i=1(∪j=t′

j=1 Pij)).

= n−m(∪i=t
i=1(∪j=t′

j=1 Pij)).

Since C is (τ, 1)-intersecting and tt′ ≤ τ , it follows that |θ(T, T ′)| > 0 by Lemma
6. Thus, C is (t, t′)-separating. �

Remark 10. The converse of Lemma 9 is not right, for example, a binary
or a ternary constant-weight code is (2, 2)-separating [3], but it is not (4, 1)-
separating by Corollary 7.

If a q-ary code is (t, 1)-separating, then t ≤ q by Corollary 7. The following
lemma shows that a simplex code is perfect in this respect.

Lemma 11. Assume C is a k-dimensional q-ary simplex code. Then, C is

(q, 1)-separating.

Proof. It is suffice to show by Lemma 6 that

m(PG(k − 1, q))−m(∪i=q
i=1Pi) > 0

for any q (projective) subspaces Pi, 1 ≤ i ≤ q, of dimension (k − 2).
Since m(p) ≡ 1 for a simplex code, it follows that

m(PG(k − 1, q))−m(∪i=q
i=1Pi)

=
qk − 1

q − 1
− | ∪i=q

i=1 Pi|

≥ qk − 1

q − 1
−
(
q
qk−1 − 1

q − 1
− (q − 1)

qk−2 − 1

q − 1

)

= qk−2 > 0.
�

Lemma 8, Lemma 9 and Lemma 11 yield.

Theorem 12. Assume C is a q-ary [n, k] constant-weight code. If q ≥ tt′, then
C is (t, t′)-separating.

If we fix t = 2 or t′ = 2 and consider (2, t)-separating property of a linear
constant-weight code, then the result of Theorem 12 can be further improved.
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Lemma 13. Assume C is a q-ary [n, k] projective code with value function

m(·), and let D represent the maximum codeword weight of C. If D < n −
qk−1−1
q−1 +qk−3, then C is (2, t)-separating for any t ≤ q. Particularly, any q-ary

[n, k] projective code with n > qk−1
q−1 − qk−3 is (2, t)-separating for any t ≤ q.

Proof. Let c0 ∈ C be a codeword with the maximum weight D, and P0 is the
(k−2)-dimensional subspace corresponding to c0. Then, it can be checked that
D = n−m(P0), furthermore,

(6) n−D = m(P0) = min{m(P ) : P ia a (k − 2)-dimensional subspace}.

Since n − D > qk−1−1
q−1 − qk−3 according to the condition of the theorem, it

follows by (6) that

(7) m(P ) >
qk−1 − 1

q − 1
− qk−3

for any (k − 2)-dimensional subspace P . Now let T = {0, c1} and T ′ =
{c′1, c′2, . . . , c′t} be any two disjoint codeword sets, and assume that the (k− 2)-
dimensional subspaces P1 and P ′

i correspond to c1 and c′i, 1 ≤ i ≤ t, respec-
tively.

Let G be a generator matrix of C, and write

c1 = v1G,

c′i = v′iG, i = 1, . . . , t.

Consider the set S of the projective points p such that

(v1, p) = 0,

(v′i, p) 6= 0, i = 1, . . . , t.

Then, it can be checked that S ⊂ θ(T, T ′) and so |θ(T, T ′)| ≥ m(S). Thus, to
prove |θ(T, T ′)| > 0, it suffices to show m(S) > 0.

Note that the set S of the points p may be written as

P1 ∩ (∩i=t
i=1P

′
i ).

Then,

m(S) = m(P1 ∩ (∩i=t
i=1P

′
i ))

= m(P1 ∩ (∪i=t
i=1P

′
i ))

= m(P1 ∩ (∪i=t
i=1(P1 ∩ P ′

i )))

= m(P1)−m(∪i=t
i=1(P1 ∩ P ′

i ))

>

(
qk−1 − 1

q − 1
− qk−3

)
− | ∪i=t

i=1 (P1 ∩ P ′
i )| (by (7) and m(·) ≤ 1)

≥
(
qk−1 − 1

q − 1
− qk−3

)
−
(
t
qk−2 − 1

q − 1
− (t− 1)

qk−3 − 1

q − 1

)
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(by dim(P1 ∩ P ′
i ) = k − 2)

= qk−3(q − t) ≥ 0.

Thus, C is (2, t)-separating for any t ≤ q. �

Since a q-ary [n, k] simplex code has n = qk−1
q−1 > qk−1

q−1 − qk−3, by using

Lemma 13, we have:

Corollary 14. A q-ary simplex code is (2, t)-separating for any t ≤ q.

Lemma 8 and Corollary 14 yield.

Theorem 15. Assume C is a q-ary [n, k] constant-weight code. Then, C is

(2, t)-separating for any t ≤ q.

4. The parameter θt,t′ of a linear constant-weight code and its

applications

In the previous section, we present the separating properties of constant-
weight codes by estimating θt,t′ . In general, it is enough to give the estimation
of θt,t′ in order to judge the (t, t′) separating property. In this section, we
will, however, aim at computing the parameter θt,t′ explicitly. The reason is
that the parameter θt,t′ can not only be used to judge the (t, t′)-separation of
codes, but also can be used to construct new (t, t′)-separating codes from linear
constant-weight codes as follows.

Let C be a q-ary [n, k] constant-weight code with value function m(·) ≡ ι.
If θt,t′ > 1 for C, then, since m(p) ≡ ι > 0, ∀ p ∈ PG(k − 1, q), we may
obtain another (t, t′)-separating [n− 1, k] code C′ by penetrating a separating
coordinate position of C. C′ has parameter θt,t′ − 1, and if θt,t′ − 1 > 1, we
may proceed to consider similar operations applied to C′ to get additional k-
dimensional (t, t′)-separating codes.

In general, in such a way above, we may obtain many (t, t′)-separating k-
dimensional q-ary codes by penetrating some separating coordinate positions
of C.

It is lucky that computing θt,t′ for a constant-weight code is possible partic-
ular for smaller t and t′, though the task is difficult for general linear codes.

Taking the computation of θ2,3 of a constant-weight code as an example, we
describe the algorithm.

Let T = {0, c1} and T ′ = {c2, c3, c4} be any two disjoint codeword sets of a
q-ary [n, k] constant-weight code. Assume

c1 = v1G

ci = viG, i = 2, 3, 4.
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Then, since m(·) ≡ ι, |θ(T, T ′)| is equal to |W |ι, where W is the set of the
projective points p satisfying






(v2, p) 6= 0
(v3, p) 6= 0
(v4, p) 6= 0
(v2 − v1, p) 6= 0
(v3 − v1, p) 6= 0
(v4 − v1, p) 6= 0.

Assume the subspaces Wi, 1 ≤ i ≤ 6, correspond to the codeword c2, c3, c4,
c2 − c1, c3 − c1 and c4 − c1, respectively (see Definition 5). Then,

W = ∩i=6
i=1Wi.

To compute |W | = | ∩i=6
i=1 Wi| = |∪i=6

i=1Wi| = |PG(k − 1, q)| − | ∪i=6
i=1 Wi|, we

may use the formula

| ∪i=6
i=1 Wi| =

∑

1≤i1≤t

|Wi1 | −
∑

1≤i1<i2≤6

|Wi1 ∩Wi2 |

+
∑

1≤i1<i2<i3≤6

|Wi1 ∩Wi2 ∩Wi3 | − · · · − | ∩i=6
i=1 Wi|.(8)

Each term in (8) can be considered as the number of the nonzero solutions
(viewed as projective points) of an equations system. For example,W1∩W2∩W4

is the set of the nonzero solutions (viewed as projective points) of the equations
system below

(9)





(v2, p) = 0
(v3, p) = 0
(v2 − v1, p) = 0.

Thus, to get |W1∩W2∩W4|, it is suffice to obtain rank{v2, v3, v2−v1}, namely,
the rank of the coefficient matrix of the equations system. To get each term in
(8), we may divide the analysis into several cases:

(case i) rank{v1, v2, v3, v4} = 4. Then, the rank of the coefficient matrix of
each equations system such as (9) can be determined.

(case ii) rank{v1, v2, v3, v4} = 3 and rank{v1, v2, v3} = 3 (without loss of
generality), and assume v4 = x1v1 + x2v2 + x3v3. Then, the rank of the coeffi-
cient matrix of each equations system such as (9) can be determined according
to x1, x2 and x3.

(case iii) rank{v1, v2, v3, v4} = 2 and rank{v1, v2} = 2 (without loss of gen-
erality), and assume v3 = x1v1 + x2v2 and v4 = y1v1 + y2v2. Then, the rank of
the coefficient matrix of each equations system such as (9) can be determined
according to x1, x2, y1 and y2.

(case iv) rank{v1, v2, v3, v4} = 1 and assume vi = xiv1, 2 ≤ i ≤ 4. Then,
the rank of the coefficient matrix of each equations system such as (9) can be
determined.
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By comparing (case i)-(case iv), both θ2,3 = minT,T ′ θ(T, T ′) and a group
of vectors {v1, v2, v3, v4} attaining θ2,3 can be determined. Using this group of
vectors {v1, v2, v3, v4} attaining θ2,3, one gets the set W , and then as stated
above, some other (2, 3)-separating codes can be obtained by using the set W .

We sum up the algorithm as follows.

Proposition 16. For modest small parameters t and t′, θt,t′ can be exactly

determined for a linear constant-weight code C, and some other (t, t′)-separating
codes can be obtained from C.

If q ≥ 7, we may determine θ2,3 for a q-ary constant-weight code in an
alternative way which is simpler than that above. Preserve the same notations
as before. Then, since

θ(T, T ′) = |W |ι = (|PG(k − 1, q)| − | ∪i=6
i=1 Wi|)ι

≥
(
qk − 1

q − 1
−
(
6 · q

k−1 − 1

q − 1
− 5 · q

k−2 − 1

q − 1

))
ι

= qk−2(q − 5)ι,

θ2,3 satisfies θ2,3 ≥ qk−2(q − 5)ι. Furthermore, θ2,3 = qk−2(q − 5)ι if and only

if | ∪i=6
i=1 Wi| = 6 · qk−1−1

q−1 − 5 · qk−2−1
q−1 , which is equivalent to Wi 6= Wj and

Wi ∩Wj = ∩l=6
l=1Wl for any 1 ≤ i < j ≤ 6. This equivalently demands that

rank{v2, v3, v4, v2 − v1, v3 − v1, v4 − v1} = 2, and no two vectors

differ only by a nonzero multiple.
(10)

Since rank{v2, v3, v4, v2 − v1, v3 − v1, v4 − v1} = rank{v1, v2, v3, v4}, we may
without loss of generality assume rank{v1, v2} = 2 and v3 = x31v1+x32v2, and
v4 = x41v1 + x42v2. Then,

{v2, v3, v4, v2 − v1, v3 − v1, v4 − v1} = {v2, x31v1 + x32v2, x41v1 + x42v2,

− v1 + v2, (x31 − 1)v1 + x32v2, (x41 − 1)v1 + x42v2},
and condition (10) is satisfied only if the following conditions hold:

x32 6= 0, x42 6= 0, and the elements

of the set

{
0,−1,

x31

x32
,
x41

x42
,
x31 − 1

x32
,
x41 − 1

x42

}
are

different ones of the finite field GF (q).

(11)

If q ≥ 7, we may denote GF (q) = {0,−1, a1, a2, a3, a4, . . . , aq−2} and let





x31
x32

= a1
x41
x42

= a2
x31 − 1
x32

= a3
x41 − 1
x42

= a4,
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or equivalently,

(12)





x31 = a1
a1 − a3

x32 = 1
a1 − a3

x41 = a2
a2 − a4

x42 = 1
a2 − a4

,

then the condition (11) can be satisfied. Thus, we have:

Theorem 17. Let q ≥ 7 and GF (q) = {0,−1, a1, a2, a3, a4, . . . , aq−2}. Then, a
q-ary [n, k] constant-weight code with m(·) ≡ ι satisfies θ2,3 = qk−2(q−5)ι, and
a group of vectors {v1, v2, v3, v4} can achieve θ2,3, where rank{v1, v2, v3, v4} =
rank{v1, v2} = 2, and v3 = x31v1+x32v2, and v4 = x41v1+x42v2, and x31, x32,

x41 and x42 satisfy (12).

5. Conclusion

In this paper, we present separating properties of linear constant-weight
codes, and state an effective computing method to determine the size of the
separating coordinate positions of a linear constant-weight code by using the
value function.
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