We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.
An algorithm for estimating incident angles of multiple broaband signals is proposed. The method adopts semicausal model for two dimensional linear prediction filter coefficients such that the arithmatic averag of the mean squared values of the forward and reverse prediction arrors is minimized. Preliminary results demonstrating the performance of the proposed method are presented. Simulation results indicate that the performance depends on signal-to-noise ratio and prediction order in spatial demension.
Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.
상수도 관망은 국가 수도 시설의 주요한 구성 요소이지만 대부분이 지중에 매립되어 있어 배관의 노후화 정도 및 누수를 파악하기 어려우므로 유지관리 하기가 매우 어렵다. 본 연구에서는 관망에 설치된 다양한 센서 조합을 가정하여, 데이터 조합에 따른 관로 누수 판별 가능성을 검토하기 위하여 선형회귀분석, 뉴로퍼지 등의 인공지능 알고리즘을 통한 유량과 압력 예측을 실시하여 최적 알고리즘을 도출하였다. 공급압력 예측을 통한 누수판별의 경우 뉴로퍼지 알고리즘이 선형회귀분석에 비하여 우수하였다. 누수유량 예측에서는 뉴로퍼지를 이용한 유량예측이 우선 고려되어야 한다. 다만, 유량을 모사하기 힘든 경우에는 선형 알고리즘을 이용한 공급압력 예측이 이루어져야 할 것으로 사료 된다.
A linear-prediction-based blind equalization algorithm for single-input single-output (SISO) finite impulse response/infinite impulse response (FIR/IIR) channels is proposed. The new algorithm is based on second-order statistics, and it does not require channel order estimation. By oversampling the channel output, the SISO channel model is converted to a special single-input multiple-output (SIMO) model. Two forward linear predictors with consecutive prediction delays are applied to the subchannel outputs of the SIMO model. It is demonstrated that the partial parameters of the SIMO model can be estimated from the difference between the prediction errors when the length of the predictors is sufficiently large. The sufficient filter length for achieving the optimal prediction is also derived. Based on the estimated parameters, both batch and adaptive minimum-mean-square-error equalizers are developed. The performance of the proposed equalizers is evaluated by computer simulations and compared with existing algorithms.
채널의 상태가 시간에 따라 수시로 변하는 전송 환경에서 수신된 신호에 대한 잡음 비를 추정하는 것이 중요하다. 대부분의 SNR 추정기는 MF(Matched Filter) 후 수신된 샘플로 추정이 이루어진다. 하지만 이런 기법들은 무선 통신에서 채널의 상태에 민감한 특성을 갖는다. 하지만 수신기의 front-end에서 모아진 데이터들을 이용하는 선형 예측(LP: Linear Prediction) 기법을 기반으로 하는 신호 대 잡음 비 추정 알고리즘은 이에 비해 안정된 성능을 보인다. 본 논문에서는 LP 기반의 SNR 추정기를 소개하고, 기존의 LP 기법 기반으로 하는 SNR 추정 알고리즘의 계산 복잡도를 줄이기 위한 새로운 기법을 제안한다. 본 논문에서 제안하는 알고리즘은 Linear Prediction 오차를 구하는 과정에서 순방향 오차와 그 conjugate 값을 이용하여 SNR 추정 과정을 보다 간단하게 한다.
래티스 공식에 기초를 두어 선형 예측을 위한 새로운 알고리즘을 구하였다. 알고리즘의 출력은 all-po1e모델의 안정도를 보장하는 반사계수이다. 매 예측 단계에서 예측 오차의 공분산(cova.iance)을 순환적으로 계산하는 방정식이 유도되었고 이 식을 계산하는 과정에서 예측 계수에 관계없이 반사 계사를 추정하도록 하였다. 공분산 래티스(covariance-lattice)방법과 비교하였을 때 새로운 알고리즘은 계산의 량을 약 반으로 줄였으며 예측 차수가 높은 경우에 보다 효률적이 된다는 것을 설명하였다.
본 논문에서는 초음파 센서를 이용하여 고령자를 위한 앰비언트 디스플레이 시스템을 제안하고, 시스템의 신뢰도를 높이기 위해서 선형 예측 알고리즘을 적용하였다. 본 논문에서는 시스템의 사용자를 고령자로 제안하여 일반인에 비해 느린 움직임으로 가정하였고 얻어진 데이터가 모두 극점인 데이터의 특성상 AR(Autoregressive) 모델을 사용하여 Yule-Walker 방식의 선형 예측 알고리즘을 적용하였다. 선형 예측 알고리즘을 적용하기 위해서는 적절한 참조 데이터와 차수의 결정이 요구된다. 본 논문에서는 데이터의 특성과 평균 에러, 계산량을 고려하여 50개의 참조데이터를 이용한 16차의 시스템을 통해서 앰비언트 디스플레이 시스템의 신뢰도를 평균 74.39%, 최대 97.97%정도 높일 수 있음을 확인하였다.
이 논문에서는 비최소위상(nonminimum phase) 채널을 등화할 수 있는 판정궤환(decision feedback equalizer)에 대한 자력등화 기법을 제안한다. 등화기는 선형필터와 예측에러 필터(prediction error filter)의 결합으로 이루어지며 각 부분에 대해 서로 다른 알고리듬을 적용한다. 즉 선형필터는 CMA(constant modulus algorithm)를 적용하여 계수를 추정하며, 예측에러 필터는 판정궤환 예측 알고리듬(decision feedback prediction algorithm)을 적용하여 필터의 계수를 추정한다. 제안한 알고리듬은 판정궤환 등화기의 FFF(feedforward filter)부를 이루는 선형필터가 수렴할 때 항상 작은 오율을 나타내는 계수로의 수렴을 보장한다. 모의실험을 통해 제안한 자력등화알고리듬의 유효성을 몇개의 채널에 대해 예를 들었으며 기존의 자력등화 알고리듬과 성능을 비교하였다.
In this study, the extractions of formants and articulatory motion trajectories for Korean complex vowels are performed by using the RLSL adaptive linear prediction filter. This enables us to extract accurate spectrum in transition of speech signal. This study shows that the RLSL algorithm is superior to the Levinson algorithm, specially in transition part of speech.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.