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A linear-prediction-based blind equalization algorithm 
for single-input single-output (SISO) finite impulse 
response/infinite impulse response (FIR/IIR) channels is 
proposed. The new algorithm is based on second-order 
statistics, and it does not require channel order estimation. 
By oversampling the channel output, the SISO channel 
model is converted to a special single-input multiple-output 
(SIMO) model. Two forward linear predictors with 
consecutive prediction delays are applied to the subchannel 
outputs of the SIMO model. It is demonstrated that the 
partial parameters of the SIMO model can be estimated 
from the difference between the prediction errors when the 
length of the predictors is sufficiently large. The sufficient 
filter length for achieving the optimal prediction is also 
derived. Based on the estimated parameters, both batch 
and adaptive minimum-mean-square-error equalizers are 
developed. The performance of the proposed equalizers is 
evaluated by computer simulations and compared with 
existing algorithms. 
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I. Introduction 

Blind equalization has become an important research 
problem in digital signal processing. If a training sequence is 
available, an adaptive equalizer can be easily developed using 
the standard least-mean-square (LMS) algorithm. However, 
there are many conditions, such as high data rates or 
bandlimited digital communication systems, in which the 
transmission of a training sequence is impractical or very costly. 
Therefore, blind adaptive equalization algorithms that do not 
rely on training signals need to be developed [2]. 

Previous research on blind equalization has been based on 
higher (than second) order statistics (HOS) of the channel 
outputs. These kinds of algorithms usually are derived via 
optimization criteria involving HOS. Various gradient-based 
algorithms are then employed to achieve optimization [3], [4].  
The HOS-based methods can be divided into two classes: 
implicit and explicit [4]. Implicit methods are adaptive and 
have simple implementation. Explicit methods need to 
explicitly estimate the HOS from a received block of signal. 
The major problem with HOS-based algorithms is their slow 
convergence and multiple local minimizers. Moreover, the 
global convergence may be jeopardized when the channel has 
finite impulse response [3]. 

In the 1990s, Tong and others showed that second-order 
statistics (SOS) of the channel outputs contain sufficient 
information to estimate the parameters of most communication 
channels when the outputs are sampled faster than the symbol 
rate (oversampling) [5]. The SOS method provides satisfactory 
tradeoff between complexity and estimation performance. 
Since the work of Tong, many efficient algorithms have been 
proposed for SOS-based blind channel estimation and 
equalization [6]-[10]. However, most SOS-based channel 
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estimation algorithms and direct equalization algorithms 
require the assumption that the channel has finite impulse 
response (FIR) with known channel order. Although it is 
reasonable to approximate a practical communication channel 
using an FIR filter, such an approximation may result in a very 
high channel order. For instance, the delay spread of an outdoor 
wireless channel is on the order of μs [11]. The typical symbol 
rate of wireless systems is on the order of 10 million symbols 
per second (20M symbols/s in 802.11a). As a result, the FIR 
channel order can be on the order of 10, or more than 100 
when oversampling is applied. When the transmission rate 
becomes higher (1 Gbps has been targeted in WLAN [12]), we 
conjecture that current equalization algorithms for FIR channel 
models will not be efficient due to the potentially high orders. 
Another example is the channels in digital subscriber line 
(DSL), where the channel response typically has a long tail 
[13], [14]. In some studies, the channel response was truncated 
and modeled as an FIR filter [14], which is not accurate and 
only practical at low to medium data transmission rates. 

The estimation and equalization of high-order FIR channel 
models require heavy computational cost. In contrast, an 
infinite impulse response (IIR) approximation is of a much 
smaller order and, consequently, incurs less computational cost 
[15]. Therefore, it is interesting to model communication 
channels by using IIR filters. An IIR channel model was 
applied to DSL channel equalization in [16], however the 
equalization algorithm applied is based on training symbols.  
Deterministic approaches, (that is, approaches not based on 
statistics) were proposed for blind parameter estimation of 
single-input single-output (SISO) IIR channels and single-input 
multiple-output (SIMO) IIR channels in [15] and [17], 
respectively. Since estimation of statistics is not required, only a 
short block of received data (tens of symbols) is required for 
blind parameter estimation. However, the algorithms are 
sensitive to channel noise. In this paper, we consider direct 
channel equalization instead. That is, we estimate the equalizer 
rather than the channel parameters. The SOSs of the channel 
output is exploited to alleviate the effect of channel noise. The 
SOSs were also exploited in [18] for direct IIR channel 
equalization. In [18], multi-step predictors were applied to 
estimate partial channel impulse response based on which the 
channel equalizer was calculated. In this paper we generalize 
the prediction model in [18] to ensure that the same partial 
channel response can be estimated by a one-step predictor.  

We consider direct equalization of SISO IIR channels. By 
oversampling the channel output, we show that the SISO IIR 
channel model can be uniquely transformed into a special 
SIMO model [19]; therefore, we can alternatively consider 
blind channel equalization of this SIMO IIR model. We 
consider Li’s linear prediction (LP) problems [8], [9] in the 

SIMO model and demonstrate that the prediction error 
derivations in [8] are still valid. Hence, as in [9], partial model 
parameters can be estimated from the prediction errors. Based 
on the estimated model parameters, a batch MMSE equalizer 
with finite delay is developed. In addition, adaptive approaches 
are developed for tracking time varying channels. The batch 
algorithm requires the computation of two eigenvalue 
decompositions (EVD), while the adaptive algorithm does not 
require explicit computation of EVD and matrix inversion, and 
can be efficiently implemented by a recursive least-square 
(RLS) algorithm or an LMS algorithm. 

The remainder of this paper is organized as follows. In 
section II, we review the problem of blind equalization by 
oversampling the received signal. A new MMSE equalizer is 
presented in section III, and adaptive algorithms are introduced 
in section V. Computer simulation results are given in section 
VI, and finally, conclusions are drawn in section VII. 

II. Problem Model 

Let x(n) denote the discrete signal to be transmitted, p(t) 
denote the pulse shaping filter at the transmitter, and hc(t) 
denote the continuous-time channel response. The channel 
output is given by 
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c

i
n

y t u t h t v t

u t x n p t nT
+∞

=−∞

= ∗ +

= −∑
            (1) 

where Ti is the transmitting symbol interval, and v(t) is the 
channel noise, which is assumed to be white and Gaussian in 
this paper. Similar to [10], [15], [20], and [21], we define 
h(t)=p(t)*hc(t) as the equivalent channel to be equalized. The 
channel output is represented as  

 ( ) ( ) ( ) ( ).iy t x n h t nT v t
∞

−∞

= − +∑         (2) 

We assume that the output sampling rate is an integral 
multiple of the input baud rate. Let To denote the output 
sampling interval. We obtain p=Ti/To as the oversampling ratio. 
Without loss of generality, we assume that To is normalized to 
To = 1. The discrete output then can be denoted as y(k), and its 
z-transform is given by 

 ( )( ) ( ) ( ).pY z H z X z V z= +            (3) 

In our derivations, the uppercase quantities are the        
z-transforms of the respective lowercase quantities. We assume 
that the input signal is an uncorrelated time sequence with zero 
mean and unit power. Consider a causal IIR channel with 
transfer function H(z) = B(z)/A(z). It was proved that, in the 
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noiseless case, the SISO model can be uniquely transformed to 
a SIMO model as in [19] as 

( )( ) ( ) ( ) ( ), 0, , 1
( )

l
l l D zY z F z X z X z l p

G z
= = = − ,  (4) 

where Dl(z)/G(z) and Yl(z) are the transfer function and output 
of the l-th subchannel, respectively. Here, Yl(z) is    
obtained from the polyphase decomposition of Y(z): 

0 1 1 1 1( ) ( ) ( ) ( ).P P P P PY z Y z z Y z z Y z− − − + −= + + ⋅⋅ ⋅ +  Since the 
transformation from (2) to (3) is unique and yl(k) can be 
obtained by decimating y(k), we can equivalently equalize the 
SIMO model in (4). Channel noise in (4) is obtained from v(t) 
by sampling and decimating. Since v(t) is white and Gaussian, 
the noise in the subchannels of (4) are white, Gaussian, and 
mutually uncorrelated. When a match filter is applied at the 
receiver, the discrete noise of the subchannels becomes time-
correlative due to oversampling. Since the power spectrum 
density of the channel noise is known, we can whiten the noise 
before channel estimation. For derivation simplicity, we 
consider only white noise in this paper.  

Collecting p output samples in a vector as y(k) = [y0(k) …   
yp-1(k)]T and temporarily ignoring the effect of noise, we have 
y(k) = [f0 f1 …]x(k), where fi = [f 0(i) … f p-1(i)]T and x(k) = 
[x(k) x(k-1) …]T . Denote yK(k) = [yT(k) …  yT(k – K + 1)]T as 
the output vector collected at time slot k . We obtain 

 ( ) ( )y FxK k k= ,                (5) 
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In the following section we derive an MMSE equalizer 
based on the SIMO IIR channel model of (5).   

III. Blind MMSE Equalization 

Denote wd as the MMSE equalizer with delay d which 
minimizes 2|| ( ) ||w y K

H
dE x n d− − . Since the input signal is 

an uncorrelated white process, one can easily derive that 
1 ,d

d K
−=w R f                   (7) 

where fd is the (d+1)th column of F, and RK is the 
autocorrelation matrix of yK(k), which can be estimated from 
the observed data. Our task is to estimate fd. Note that fd 
contains partial parameters of the channel impulse response. 
The estimation of fd is called a partial model estimation. A 
similar approach was applied in [18], where the applied 

problem model is a special case of (5), in which 
1 0 1( ) [     ] ( )y f f xk k= . Multi-step predictors were applied to 

estimate 0 1[      ]df f f  separately and then to form the 
estimate of fd. In this paper, we generalize the problem model 
and show that fd can be estimated by one-step linear prediction. 
Consider the following linear prediction problem: 
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where ( 1) [ ( 1), , ( )] ,y y yT T T
M k d k d k d M− − = − − − −  

I pK  is the pK×pK identity matrix, and Pd is the pK×pM 
prediction matrix. We can estimate Pd from 

 ( ) ( )arg min { [ ( )][ ( )] }.
P

P ε ε
d

d d H
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We first consider the noiseless case. Decompose yK(k) in (5) 
as 
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where Fd contains the first d+1 columns of F, and F̂d  
contains the rest of the columns of F. The subvector xd contains 
the first d+1 elements of x, while ˆ ( )xd k  contains the rest of 
the elements in x. We have the following theorem. 

Theorem 1. If Pd is the optimal prediction matrix that 
minimizes ( ) ( ){ [ ( )][ ( )] }ε εd d Htr E k k , then 

 ( ) ( ) ( ),ε F xd
d dk k=                (11) 

 ( ) ( )min {[ ( )][ ( )] } ,ε ε F Fd d H H
d dE k k =        (12) 

where the length of the predictor is pM with 
max( 1; )d g dM n n n= − −  being sufficient to achieve the 

optimal prediction, while ng and nd denote the order of G(z) and 
the maximal order of Dl(z), respectively. 
Proof) See the appendix.                            � 

Remark 1. An FIR SIMO model is equivalent to an IIR 
SIMO model with ng = 0. Blind equalization of such FIR 
SIMO models was considered in [8] and [9], where a similar 
theorem was derived (Theorem 2 in [8]) under the assumption 
that F has full column rank. On the other hand, theorem 1 in 
this paper is derived differently, where a general IIR channel is 
considered, and F may not have full column rank.  

Remark 2. The derivation of the optimal predictor is 
motivated by [18], and we derive an optimal predictor with 
tighter sufficient predictor length. This is because a more 
efficient predictor is used. The sufficient length of the optimal 
predictor obtained in this paper is smaller than that in [18] 
which equals p∙(ng + nd – 1). 
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Remark 3. Theorem 1 suggests a method for estimating fd.  
Consider two predictors with delays d and d-1. From (11), we 
have ( ) ( 1)( ) ( ) ( )ε ε fd d dk k x k d−− = − , which is an estimate of 
fd with unknown scalar x(k–d). Statistics can be exploited to 
reduce the effect of noise. From (12), we have  

( ) ( ) ( 1) ( 1){ ( )[ ( )] } { ( )[ ( )] }

[ ] .

ε ε ε ε

f f E

d d H d d H

def
d d

E k k E k k− −−

= =
   

(13)
 

Then, fd can be estimated as the eigenvector of E which 
corresponds to the unique non-zero eigenvalue.  

Remark 4. The selection of predictor length requires the 
values of ng and nd, which are unknown in practice. A longer 
predictor will not significantly increase the computation 
complexity. We argue that a very rough estimate of model 
order is enough. According to the model transfer in [19], we 
have { , }d g hn n n≤  with nh as the order of the original SISO 
channel. Usually, a third-order IIR model can be applied to 
model most practical channels. When applying the proposed 
algorithm, it is safe to set the predictor length to M=3 or M=4.  

We estimate fd based on (13). Consider another LP problem 
with delay d – 1: 
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Equations (8) and (14) imply that 
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Partition the matrices R(d) and R(d-1) as 
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where U11 and W1 are of size pK×pK, while U12 and W12 are  
of size pM×pM. The optimal prediction matrices that minimize 
the prediction error variance are given as in [9] by 

 12 22 1 12 22, .d d
+ +

−= =P U U P W W            (20) 

Note that U11= W11 and U22= W22. Substituting (20) into (15) 

and (16) yields 
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It follows that 

 12 22 21 12 22 21[ ] .E f f W U W U U Ud d H + += = −      (23) 

Since W12, U22, W21, U12, and U21 are all estimated from the 
output signal y(k), fd can be estimated from (23) by Chelosky 
decomposition or eigendecomposition. Let λ denote the unique 
non-zero eigenvalue of E, and let β denote the corresponding 
eigenvector. Then, fd can be estimated as 

 .f βd λ=                    (24) 

The MMSE equalizer with delay d can be computed from (7) 
with the above partial model estimation. Note that an FIR 
SIMO model is a special case of the IIR SIMO model. The 
MMSE equalizer is also applicable to SISO FIR channels.  

To obtain a more reliable estimate of fd in noisy cases, we 
need to remove the noise effect from W, RM, and U. The 
method in [18] is applied (see (3.58) in [18]), which requires 
estimation of the noise variance. If the noise free correlation 
matrix is rank deficient, then the noise variance can be 
estimated as the average of the smallest eigenvalues of the 
noise corrupted correlation matrix. We have the following 
theorem regarding the rank of the noise free correlation matrix. 

Theorem 2. The rank of the pN×pN noiseless correlation 
matrix RN  equals .N dN nρ ≤ +R（ ）  
Proof. See [1].                                    � 

In the following simulations, the noise variance is estimated 
by performing EVD on U22, which is of size pM×pM. It was 
shown in [18] that the rank of noiseless RpM×pM is upper 
bounded by p(M–1) + 1. As a result, only M– 1 eigenvalues 
were used to estimate the noise variance. In the following 
simulations, M is selected so as to satisfy 1dM n≥ − . 
Theorem 2 implies that we can use at least (p–2)M+1 
eigenvalues to estimate the noise variance, where more precise 
estimation than that presented in [18] is expected. 

IV. Adaptive Algorithms 

In the previous section, we presented the derivation of a 
blind MMSE equalizer for an IIR SISO channel using 
oversampling and LP by batch processing. The implementation 
of (7) requires the computation of EVD for E and U22 and the 
matrix inversion of RK and U22. Note that the inversion of U22 
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can be computed via EVD. Further computational complexity 
reduction can be achieved if we set K = M, where only two 
EVDs (for E and RK) are required. However, the 
computational complexity is still too high, and this limits its 
application in time-varying channels. In the following 
subsection, we derive the blind MMSE equalizer for IIR SISO 
channel by adaptive processing to avoid the computation of 
EVD. 

1. RLS Adaptive Equalizer 

The blind MMSE equalizer can be implemented by adaptive 
processing such that the equalizer is updated in a similar 
fashion as the RLS adaptive filter. This can be done by 
updating the SOS of RK, U12, U21, W12, W21, and U22 using an 
RLS algorithm. For each time slot k, the sample vectors yK(k), 
yK(k–d), and yK(k–d–1) are used to update the statistics of U12, 
U21, W12, W21, and U22 as well as the partial model parameters 
according to (24). Then, RK is updated, and the equalizer is re-
estimated according to (7). The algorithm comprises the 
following steps. 

 
Step 1. Initialization. 

U12(0) =0，U21(0) =0，W12(0) =0， W21(0) =0 
1(0)R IK pK pKδ−

×= , 1
22 (0)U I pM pMδ−

×=  
where δ  is a small positive constant.  

Step 2. For each time instant k = 1, 2,…, update the matrices 
U12, U21, W12, W21, and U22 as 
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Step 3. Estimate the partial channel parameter. 
1 1

12 22 21 22 21( ) ( ) ( ) ( ) ( ) ( ) ( ).k k k k k k k− −= −E U U U W U W  (31) 

Estimate f d(k) as the column in E with the largest norm [8]. 
Step 4. Update RK and estimate the equalizer. 
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 1( ) ( ) ( ).w R f d
RLS Kk k k−=            (34) 

Here, λ is the forgetting factor. The proper selection of λ was 
discussed in [8]. Although different λ values can be used in 
each update equation from (25) to (33), for simplicity, the same 
λ value is used. We found that the performance gain achieved 
by using different λ values is close to that of using the same λ in 
the above algorithm.  

An RLS adaptive equalizer based on the zero-forcing 
criterion was also proposed in [8], while the proposed 
algorithm is MMSE optimal. Furthermore, the algorithm in [8] 
requires the computation of two prediction matrices, whereas 
the proposed RLS algorithm directly updates the correlation 
matrices. The computational complexity of the above 
algorithm is approximately on the order of 

3 2 2(2( ) 4( ) )O K M KMp M KM p+ + + , which is similar to 
that of the algorithm in [8]. 

2. LMS Adaptive Equalizer 

The blind MMSE equalizer can also be updated in a similar 
fashion as that in the LMS adaptive filter, where the prediction 
matrix, the partial channel parameters, and the equalizer are 
updated in a sequential manner. The algorithm comprises the 
following steps. 

Step 1. Update the prediction matrices. 

 ( ) ( ) ( ) ( 1),d K d Kk k k k d= − − −ε y P y          (35) 

 1 1( ) ( ) ( ) ( ),d K d Kk k k k d− −= − −ε y P y          (36) 

 1( ) ( 1) ( ) ( 1),d d d Kk k k k dμ= − + − −P P ε y      (37) 

 1 1 1 1( ) ( 1) ( ) ( ).d d d Kk k k k dμ− − −= − + −P P ε y     (38) 

Step 2. Update the partial channel estimate. 

 1 1( ) ( ) ( ) ( )).H H
d d d dk k k k k− −−E ε ε ε ε( )=(       (39) 
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(40) 
Note that fd is estimated as the eigenvector corresponding to 

the largest eigenvalue of E(k). 

 ( ) max ,
H

d
Hf

kk =
f E ff

f f
( )              (41) 

which immediately leads to the update equation (40). 
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Step 3. Update the equalizer. 

3

( )

( 1) 2 ( ) ( ) ( 1) ( ),
LMS

H d
LMS K K LMS

k

k k k d k kμ= − − − − −

w

w y y w f (42)
 

where μ1, μ2, and μ3 are the learning rates, which should be 
selected according to the landscape of the cost functions.  

In our simulations, we use the same learning rate for simplicity. 
The complexity of the LMS equalizer is approximately in the 
order of O(5K2p2 +4KMp2), which is much lower than that of the 
RLS equalizer, and the LME equalizer in [9]. 

V. Simulation Results 

The performance of the proposed MMSE equalizer is 
compared to the zero-forcing equalizer presented in [9], and the 
MMSE equalizer presented in [18]. Simulations are performed 
with 16 QAM i.i.d. input signal x(n) on random channels 
corrupted by AWGN at various signal to noise ratios (SNRs), 
where the SNR is defined as 

 2 210 log( ( ) / ( ) ) (dB).SNR E x k E v k=      (43) 

The performance of the equalizers is measured by the mean-
square error (MSE) between the input signal and the equalized 
signals, which is defined as 

 2ˆ[ ( ) ( ) ],MSE E x k x k= −             (44) 

where ˆ( )x k  is the equalized signal. 
All the equalizers considered in the simulations suffer from a 

scalar ambiguity problem, which makes it impossible to 
compute the MSE. In practice, the scalar ambiguity problem 
can be resolved by differential coding. For simplicity, we 
assume that the first transmitted symbol is known to the 
receiver, that is, that one pilot symbol is being sent to resolve 
the scalar ambiguity problem. 

All the batch equalizers considered in the simulations require 
the estimation of the noise free correlation matrices, such as Rd 
and Rd-1 in (19), where the method presented in [18] is used. To 
implement the proposed equalizer, the noise variance is 
estimated as the average of the (p–2)M +1 smallest eigenvalues 
of the pM×pM correlation matrix U22. When implementing the 
method in [18], only the M-1 smallest eigenvalues are used (as 
suggested in [18]). In a noisy case, the estimated U12, U21, W12, 
and W21 may also be corrupted by AWGN. In this case, the 
estimated noise variance is used to suppress the noise 
component. 

1. FIR Channels 

The proposed algorithms are applicable to both FIR and IIR  

 

Fig. 1. Real and imaginary parts of the measured FIR channel.
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Fig. 2. Eye diagram of the proposed MMSE equalizer with 500 
symbols (SNR=25 dB). 
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channels. We first consider FIR channels. An FIR channel 
obtained from microwave channel measurement with real and 
imaginary parts, as shown in Fig. 1, is applied in this set of 
simulations. The SIMO channel model was obtained by 
oversampling the FIR channel output as discussed in section I. 
In the simulations, the oversampling ratio p = 3, such that the 
FIR channel is transformed to a SIMO system with 3 
subchannels. The delay was selected to be 1. That is, d = 1. The 
length of the predictor was set to pM = 3×4=12, and the length 
of the equalizer was set to pK = 3×3 = 9. 

The received signal constellation and the equalized signal 
constellation for 500 symbols at an SNR of 25 dB are shown in 
Fig. 2. The proposed equalizer successfully suppresses the ISI 
caused by the channel. 

To compare the performance of the batch equalizers, the 
average of the MSE obtained from 150 independent trails are 
plotted in Fig. 3. The zero-forcing equalizer is the most 
sensitive to additive noise. The proposed MMSE equalizer 
outperforms the zero-forcing equalizer at low SNRs. At high  
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 Fig. 3. MSE comparison of the batch equalizers in the measured
FIR channel for 150 Monte Carlo runs with 500 symbols.
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Fig. 4. Learning curves of the adaptive equalizers for the
measured FIR channel: (a) SNR=15 dB and (b)
SNR=25 dB. 
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SNRs, all equalizers considered in the simulations show similar 
performance. 

It can also be observed that the proposed MMSE equalizer 
exhibit better performance than that of the MMSE equalizer in 
[18]. Even though both algorithms are MMSE optimal, 
different approaches are used to estimate the partial channels. 
The better performance of the proposed algorithm is because a 
general prediction model is used in (8); however, the prediction 
model in [18] can be considered a special case of that in (7) 
with K=1. As a result, the columns of the channel transfer 
matrix F considered in [18] contain only one slot of the 
impulse response. Multi-step predictions are required to 
estimate the impulse response of multiple time slots; therefore, 
the method in [18] is more complicated. Secondly, more 
eigenvalues are used to estimate the noise variance, which 
results in a more accurate estimation [18]. 

The performance of the proposed MMSE-based RLS and 
LMS adaptive algorithms at SNRs of 15 dB and 25 dB is 
shown in Fig. 4. The forgetting factor λ = 0.998 and the  

 

Fig. 5. Zeros of the subchannel of the ill-conditioned FIR 
channel, *, o, +, and • denote the zero locations of each 
subchannel.
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Fig. 6. Learning curves of the adaptive equalizers in the ill-
conditioned FIR channel: (a) SNR=15 dB and (b) 
SNR=25 dB. 
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learning rate μ1=μ2=μ3=0.0009. Compared with that obtained 
from the RLS equalizer in [8] (denoted as ZF-RLS), both RLS 
equalizers are able to achieve faster convergence than the LMS 
equalizer. In particular, the proposed RLS equalizer 
outperforms the ZF RLS equalizer in [8] at low SNRs. 
However, they have similar MSE performance at high SNRs. 

We further evaluate the performance of each equalizer with 
an ill-conditioned channel, that is, a channel with near common 
zeros among subchannels. The ill-conditioned channel in [9] is 
considered in the simulations, where the impulse response of 
the channel is given by 

( ) ( ,0.45) ( ) 0.8 ( 0.25 ,0.45) ( 0.25 )
          0.4 ( 2 ,0.45) ( 2 ),
h t c t W t c t T W t T

c t T W t T
= + − −

− − − (45)
 

where c(t, 0.45) is the raised roll-off cosine window with a roll-
off factor of 0.45, and W(t) is a rectangular truncation window 
spanning [-0.85T, 5.14T]. A discrete channel of order 23 is 
obtained by sampling h(t) with a interval of 1. The 
oversampling ratio was set to p=4. The zeros of each  
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Fig. 7. Eye diagram of the proposed MMSE equalizer in the IIR
channel with 500 symbols (SNR=25 dB). 
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subchannel are plotted in Fig. 5. 

The learning curves of the three adaptive algorithms 
considered in this paper are shown in Fig. 6 for SNRs of 15 dB 
and 25 dB. It can be observed that the LMS equalizer has slow 
convergence in the ill-conditioned channel, and it does not 
converge to the correct equalizer at an SNR of 25 dB. The ZF-
RLS equalizer has faster convergence than the proposed 
MMSE-RLS equalizer, but it has a higher steady-state MSE. 

2. IIR Channels 

Simulations of the proposed algorithms using randomly 
selected IIR channel are performed. An example of the random 
IIR channel is the following: 

1 ( ) 1 0.5 0.14 0.1( ) .
( ) 1 0.3 0.22 0.1

BH z
A

− − + +
= =

+ − +

-1 -1 -2 -3

-1 -1 -2 -3

z z z z

z z z z
   (46) 

The constellation diagram before and after equalization at an 
SNR of 25 dB is shown in Fig. 7. The input to the equalizer is 
severely corrupted by ISI when compared to that of the FIR 
channel case. The proposed equalizer can efficiently suppress 
the ISI effect as observed in Fig. 7. 

The MSE performance of the proposed batch equalizers are 
shown in Fig. 8 with oversampling ratio p = 3 at various SNRs. 
The length of the equalizers is pK = 3×3 = 9, and the length of 
the predictors is pM = 3×4 = 12. The packet size of the channel 
input is 500. The corresponding channel output is used to 
estimate the correlation matrices. Theorem 1 implies that the 
ZF equalizer in [9] is also applicable to IIR channels, and its 
result is also shown in Fig. 8. The MSE performance shown in 
Fig. 8 is similar to that shown in Fig. 3. We can conclude that 
the zero-forcing equalizer in [9] is the most sensitive to noise 
for both FIR and IIR channels, while the proposed MMSE  

 

Fig. 8. MSE comparison of the batch equalizers in the IIR 
channel for 150 Monte Carlo runs with 500 symbols. 
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Fig. 9. Learning curves of the adaptive equalizers in the IIR 
channel: (a) SNR=15 dB and (b) SNR=25 dB. 
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equalizer can achieve the best performance at low to medium 
SNRs for both FIR and IIR channels. 

The learning curves of different adaptive equalizers are 
shown in Fig. 9 at SNRs of 15 dB and 25 dB with the same 
forgetting factor and learning rate as in the FIR cases. The 
LMS equalizer has slow convergence and high steady state 
MSE. At low SNRs, the ZF-RLS and MMSE-RLS equalizers 
achieve fast convergence and have similar levels of steady-state 
MSE. At high SNRs, the MMSE-RLS has slower convergence 
than ZF-RLS but can achieve a lower steady-state MSE. 

VI. Conclusion 

A new blind equalization algorithm was proposed for 
oversampled SISO FIR/IIR channels. Both batch and adaptive 
implementations were presented. This paper also proposed a 
general partial model estimation algorithm for IIR channels as 
well as for FIR channels, which in fact can be applied to other 
applications, such as the derivation of the ZF equalizer in [8]. 
More importantly, this paper extended the work of [8], [9], and 
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[18] to the SISO IIR channel model by applying a more 
efficient presentation of linear prediction. We demonstrated that 
the algorithms in [8], [9], and [18] are applicable to blind 
equalization of SISO IIR channels. 

Appendix. Proof of Theorem 1 

We first consider K=1 and d=0. Denote U(z) = [1/G(z)]X(z). 
We assume that G(z) is monic here. Based on (4), y(k) can be 
represented as  

0
1 1

( ) ( ( ) ( )) ( )y d d
g dn n

i i
i i

k g u k i x k u k i
= =

= − − + + −∑ ∑    (A1) 

       0
1 1

( ) ( ) ( )r d d
g dn n

i i
i i

u k i u k i x k
= =

= − + − +∑ ∑       (A2) 

max( )

0
1

( ) ( )θ d
g dn n

i
i

u k i x k
=

= − +∑               (A3) 

0( ) ( ),
def

k x k= +s d                         (A4) 

where 0 1[ ( ), , ( )]d p T
i d i d i−= , 0, , di n= , 0 ,i ig= −r d  and 

θ r di i i= + . We show that s(k) is the optimal prediction of y(k) 
and d0x(k) is the prediction error.  

Denote ( ) [ ( ), , ( 1)]T T T
N k k k N= − +y y y and ( )

dN n k+ =u  
[ ( ), , ( 1)]du k u k N n− − + . It has been proved that if 

1( )lD z− ’s do not share a common zero and 1dN n≥ −  then 
yN(k) and ( )

dN nu k+  span the same Hilbert space (theorem 1 
in [6]). 

, ,( ) ( ),y
dk N k N nH H u+=             (A5) 

where , ( ) sp{ ( ) | 0, , 1},k NH k i i N= − = −y y , ( )
dk N nH u+ =  

sp{ ( ) | 0, , 1}du k i i N n− = + − . Let 1dN n= − , and apply 
(A3) to y(k–1). It is straightforward that if max( , )g d dn n n=  
or 2 1,d g dn n n≤ ≤ − 1,2 1 1,( ) ( ) ( ),

d dk n k N nk H u H u− − − +∈ =s  
and consequently, 1, 1( ) ( )s y

dk nk H − −∈ . It follows that 
1

1
( ) ( ),

dn

i
i

k k i
−

=

= −∑s A y              (A6) 

for some parameter matrices Ai. When 2 ,g dn n≥ let 
g dN n n= − , and we have

g1, 1,( ) ( ) ( )s
dk n k N nk H u H u− − +∈ = . It 

follows that 1,( ) ( )s
g dk n nk H y− −∈ , that is,  

1
( ) ( )s A y

g dn n

i
i

k k i
−

=

= −∑              (A7) 

for some parameter matrices Ai. The relation of s(k) and y(k) 
finally can be presented as 

 
max( 1, )

1
( ) ( )s A y

d g dn n n

i
i

k k i
− −

=

= −∑          (A8) 

for properly selected parameter matrices Ai. Equation (A8) 
presents the prediction of y(k) using the past data. It is 
straightforward that the prediction error d0x(k) is orthogonal to 
y(k–i) for i = 1, 2,…. Therefore, P0 = [A1，A2，…] is the 
optimal prediction matrix and M = max(nd–1, ng – nd) is a 
sufficient predictor length to achieve the optimal prediction. 

Now, we investigate the relation between d0 and f0. From 
(A2) and (A8) we have E[x(k)y(k)] = E[x(k)d0x(k)]. From (4) 
we have E[x(k)y(k)] = f0, which follows d0 = f0. Next, we 
consider K = 1 and d > 0. Replacing u(k–1) in (A2) with  

1

2
( 1) ( ) ( 1)gn

ii
u k g u k i x k+

=
− = − − + −∑ , we have  

 
g d1

(1) (1)
0 1

2 2
( ) ( ) ( ) ( ) ( 1)y r d d r

n n

i i
i i

k u k i u k i x k x k
+

= =

= − + − + + −∑ ∑  

(A9) 
for some properly selected parameter vectors (1)ri . Similarly, 
replacing u(k–i) for i = 2,…,d, we have, in general, for 
appropriate choices of ( )r d

i  

g d
( ) ( )

1 1 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( ),

y r d r

s ε

n d n d
d d

i i i
i d i d i

def
d d

k u k i u k i x k i

k k

+

= + = + =

= − + − + −

= +

∑ ∑ ∑
(A10)

 

where max( , )( ) ( )
1

( ) ( )s θg dn d nd d
ii d

k u k i+

= +
= −∑ with ( ) ( )θ r dd d

i i i= + . 

Similar to (A8), it can be derived that  
max( 1, )

( ) ( )

1

( ) ( )s A y
d g dn n n d

d d
i

i d

k k i
− − +

= +

= −∑        (A11) 

for some properly chosen parameter matrix ( )A d
i . It is easy to 

verify that ( ) ( )ε d k  is orthogonal to y(k–i) for i = d +1, d+2,…. 
Therefore, ( ) ( )s d k  is the optimal prediction and ( ) ( )ε d k  is 
the prediction error. By calculating E[x(k – i)y(k)] for i = 0,…, d, 
we have fi = ( )r d

i  (i = 0,…, d). Next, we consider K > 1 and  
d > 0. Applying (A8) for y(k–j) (j = 0,…, K–1) and using 
different delays, we have 

( ) ( )( ) ( ) ( ), 0, , 1.d j d jk j k j k j j K− −− = − + − = −y s ε (A12) 

The prediction can be presented as 
max( 1, )

( ) ( )

1

ˆ
( )

1

( ) ( )

( ), 0, ,

d g dn n n d j
d j d j

i
i d j

M d
d j

i
i d

k j k j i

k i j K

− − + −
− −

= − +

+
−

= +

− = − −

= − =

∑

∑

s A y

A y …, -1

   
(A13)

 

where ˆ max( 1, )d g dM n n n= − − . Equation (A13) represents 
the prediction of y(k) to y(k–K+1), that is, yK(k), using the same 
past data. We combine the equations in (A13) by defining the 
following matrices: 
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( ) ( )

( 1) ( 1)
1

( 1) ( 1)
1

, .

d d
i i
d d

i i
i

d K d K
i i K

− −
−

− + − +
− +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i

A r
A r

A r

A r

        (A14) 

Combining the equations in (A14) yields 
ˆ

1 0

( ) ( ) ( )y A y r
M d d

K i i
i d i

k k i x k i
+

= + =

= − + −∑ ∑         (A15)  

 ˆ( ) ( ),s Φx
def

dk k= +                    (A16) 

where 0[ ]Φ r rd= . Note that the channels considered in 
this paper are causal. We have 0rd

i j− =  for arbitrary d if    
i–j < 0. Hence, based on (5), It can be derived that Fd =Φ , and 
consequently, we have ( ) ( )[ ( )][ ( )] F Fd d H H

d dk kε ε = . Note that 
(A13) also shows that the sufficient length of the optimal 
predictor is decided by ˆ max( 1, ),d g dM M n n n= = − −  
which completes the proof. 
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