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1 | INTRODUCTION

Abstract

We propose a network traffic prediction model based on linear and nonlinear
model combination. Network traffic is modeled by an autoregressive moving
average model, and the error between the measured and predicted network
traffic values is obtained. Then, an echo state network is used to fit the predic-
tion error with nonlinear components. In addition, an improved slime mold
algorithm is proposed for reservoir parameter optimization of the echo state
network, further improving the regression performance. The predictions of the
linear (autoregressive moving average) and nonlinear (echo state network)
models are added to obtain the final prediction. Compared with other predic-
tion models, test results on two network traffic datasets from mobile and fixed
networks show that the proposed prediction model has a smaller error and
difference measures. In addition, the coefficient of determination and index of
agreement is close to 1, indicating a better data fitting performance. Although
the proposed prediction model has a slight increase in time complexity for
training and prediction compared with some models, it shows practical
applicability.

KEYWORDS
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management according to complex characteristics and
change laws [2]. Therefore, network traffic prediction has

The Internet is ever-expanding driven by its populariza-
tion and the development of networking technologies,
and network services and applications are becoming
increasingly diverse. Network traffic can reflect user
activities and allow to evaluate the network load and
operation status [1]. Through network traffic prediction,
researchers can manage the network operation, find
bottlenecks, detect potential threats and faults, optimize
configuration, and perform intrusion detection and fault

become a research hotspot.

Network traffic exhibits complex linear and nonlinear
characteristics [3]. Therefore, combining linear and non-
linear components for network traffic prediction seems
reasonable to increase its accuracy. By extracting the lin-
ear and nonlinear components of network traffic sepa-
rately and selecting appropriate models for prediction,
correct prediction of network traffic can be achieved when
adding the predictions of linear and nonlinear models.
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We propose a combined prediction model for network
traffic considering linear and nonlinear components. The
linear component of network traffic is described by an
autoregressive moving average (ARMA) prediction
model. In addition, an echo state network (ESN) opti-
mized by an improved slime mold algorithm (ISMA) is
introduced to predict the residual of the network traffic
after removing the linear components predicted by the
ARMA model. Finally, the predictions of the ARMA
model and ISMA-optimized ESN are added to obtain the
prediction results. Two real network traffic datasets are
considered as the research object, and various evaluation
indicators allow to verify the effectiveness of the pro-
posed prediction model. The results indicate that the pro-
posed prediction model is superior to existing models for
all performance indicators.

The main contributions of this study are as follows:

1. A combined network traffic prediction model based
on both linear and nonlinear components is proposed.

2. ARMA is selected as the prediction model for the lin-
ear component of network traffic.

3. The ISMA-optimized ESN is adopted as the prediction
model for the nonlinear component of network traffic.

2 | RESEARCH STATUS

Network traffic prediction is based on objective and sci-
entific mathematical methods to analyze and describe
related trends [4]. Currently, linear, nonlinear, and com-
bined prediction models are the mainstream research
directions in network traffic prediction. Such models
have promoted the development and progress of network
traffic prediction.

2.1 | Linear prediction models

Traditional models are based on the periodicity of linear
changes. They are simple and fast and allow to suitably
interpret and describe linear data. Early network traffic
prediction assumed that network traffic follows a strict
periodic law, and the prediction was obtained by averag-
ing historical data. Exponential smoothing also assumes
that network traffic is stable and regular and that the cal-
culations are not intensive. For prediction, the weight of
historical data converges to zero, and the prediction is
corrected by calculating an exponential smoothing
parameter [5]. Researchers have considered that network
traffic follows a Poisson distribution [6] or resembles a
Markov process [7]. Other models include the Markov
time-varying [8], ARMA [9], and autoregressive

integrated moving average (ARIMA) [10] models. How-
ever, accurately describing the complex characteristics of
network traffic remains difficult using traditional linear
prediction models.

2.2 | Nonlinear prediction models
Network traffic has complex characteristics such as nonli-
nearity, self-similarity, multifractality, and periodicity.
With the continuous development of machine learning,
numerous nonlinear models have been applied to net-
work traffic prediction. Because of their characteristics,
support vector machines (SVMs) and least-squares SVMs
are particularly suitable for network traffic prediction
with small sample sizes [11, 12]. In many cases, these
models outperform ordinary neural networks. However,
both SVM and least-squares SVM can suffer from the
curse of dimensionality by large amounts of data and are
very sensitive to model parameters [13]. Another widely
used nonlinear model is the neural network, which has a
strong nonlinear mapping ability and can process highly
nonlinear data. Typical application models of neural net-
works include ESNs [14], extreme learning machines [15],
fuzzy neural networks [16], and radial basis function
neural networks [17]. Several experimental simulation
studies have demonstrated that a nonlinear prediction
model based on an SVM or neural network provides
more accurate predictions than a traditional linear pre-
diction model.

The continuous improvement in computing power
has opened new directions for applying deep learning to
network traffic prediction [18, 19]. A deep learning
model is very suitable for nonlinear network traffic
modeling and prediction. Nevertheless, deep learning
has some defects, such as uneven structure, difficulty in
determining hyper-parameters, and susceptibility to fall
into local optima. In addition, it requires algorithm opti-
mization during training and has a large calculation
cost, requiring massive computing power from graphics
processors.

2.3 | Combined prediction models

Separate linear or nonlinear models fail to directly
describe all the characteristics of real network traffic,
thus affecting the final prediction. Therefore, the combi-
nation of prediction models has been explored. Com-
bined prediction models are divided into three main
approaches. The first approach is combining two or more
single prediction models to increase the accuracy of pre-
diction by iterating multiple prediction results. Examples
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include the Kalman filter, ESN [20], deep neural net-
work, and hidden Markov model [21]. The second
approach introduces an optimization algorithm into the
model to improve prediction. These models include parti-
cle swarm optimization and Elman neural networks [22].
The third approach introduces an algorithm to decom-
pose the network traffic and then selects the appropriate
prediction model for each obtained component. These
models include wavelet transform with multiple model
fusion [23], ensemble empirical mode decomposition
with multiple models [24], and variational mode decom-
position (VMD) with multi-reservoir ESN [25]. Overall,
the feasibility of combined prediction models has been
confirmed.

In practice, network traffic involves a mixture of lin-
ear and nonlinear components. When selecting a predic-
tion model, we should extract the different components
of network traffic, input them into the corresponding lin-
ear or nonlinear model for independent prediction, and
combine the prediction results.

3 | PROPOSED PREDICTION
MODEL

In a complex system, external influencing information
causes changes in the system. For network traffic, the
influencing factors are complex. Therefore, a prediction
model can only describe the main trend of network traffic
owing to diverse influencing factors. The prediction error
has been mostly neglected as a factor influencing predic-
tion. Moreover, for a network traffic sample, the perfor-
mance of different models varies. Nevertheless, any
single model can extract information from a sample, and
its prediction error can be considered valuable. There-
fore, different models can be applied to the same data. If
the change law of network traffic can be determined from
historical data, the prediction error can be estimated, and
the obtained prediction can be compensated to improve
the overall prediction accuracy. Hence, we first use a lin-
ear ARMA prediction model to fit the network traffic
data. Then, the ISMA-optimized ESN with good non-
linear prediction ability is used to fit the prediction error.
The final prediction is derived from the sum of the pre-
dictions of the two models.

Let a network traffic sample be denoted as T(k),
where k is the current sampling time. Linear and non-
linear components are included in the sample:

T(k) =L(k) +N(k), 1)

where L(k) and N(k) are the linear and nonlinear com-
ponents of the network traffic sample, respectively.

If an ARMA model is adopted to forecast network
traffic, the prediction of the linear component is L(k).
The prediction error, including the nonlinear compo-
nents shown in (2), can then be obtained.

N(k) =T(k) —L(k). 2)

The ISMA-optimized ESN forecasts nonlinear compo-
nent N(k), where N (k) is the prediction. Hence, the final
prediction, T(k), of the combined prediction model can
be obtained as follows:

T(k) =L(k) + N (k). (3)

A diagram of the proposed network traffic prediction
model is shown in Figure 1. The model performs a
one-step prediction. In practice, network traffic should be
predicted at multiple moments in the future. We obtain
multistep prediction by using one-step prediction and
cyclic iteration. Specifically, the model predicts network
traffic at a sampling time in the future. The prediction is
considered as the real value and placed into the head of
the network traffic sample queue, whereas the earliest
network traffic data point at the end of the queue is
discarded. Hence, network traffic values at multiple
sampling times can be predicted. As shown in Figure 1,
the predictions of the ARMA model and ESN are added
with weights of 1.

3.1 | Modeling

We first collected network traffic samples and divided
them into disjoint training and test sets. The ARMA
model was determined using the training samples. The
obtained ARMA model was used to forecast the network
traffic training set and obtain predictions. The real values
of the network traffic sample minus the predicted values

Z_L‘ompanent(k +1)

Network traffic

samples

ARMA

Tk +1)

L_component(k—1+1), ..., L_component(k)

N_component(k + 1)

Prediction error

| ESN
samples

Diagram of proposed network traffic prediction

Tk-1+1),...,T(k)

FIGURE 1
model.
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of the ARMA model were used to obtain prediction
error samples, which were then used to train the
ESN, whose reservoir parameters were optimized by the
ISMA.

Step 1 For current sampling time k, the inputs of the
network traffic test set are T(k—I+1),
T(k—1+2), .., T(k—1), where [ is the length of
input sample. Then, prediction L(k+1) of the
ARMA model is obtained.

Step 2 Predictions L(k —[+1), ..., L(k — 1) are subtracted
from Tk—-I1+1), T(k—1+2),..,T(k—1) to
obtain the prediction error samples. These sam-
ples are input into the ESN to obtain prediction
N(k+1).

Step 3 The final prediction, T(k+1), at the next sam-
pling time is obtained by adding L(k+1) and
N(k+1).

Step 4 The input network traffic sample sequence is
updated. The last value of the sequence is dis-
carded, and T(k+1) is added to the head of the

sequence.

Step 5 Steps 2-4 are repeated until all the predictions
are made.

4 | FORMULATIONS

In this section, the formulations of the ARMA model,
ESN, and ISMA for the proposed prediction model are
presented.

41 | ARMA model

The ARMA model allows to evaluate the correlation
between periodic and nonstationary data and accurately
predict linear components. Thus, this model is appropri-
ate for predicting linear components in network traffic.
The stationary and linear series are modeled using the
ARMA model as follows:

Vi=bo+ @y 1ty ot epypt+ & — 018
e~ Oerg, (4)

where y, represents the data, ¢; and 6; are polynomial
parameters, and ¢; is white noise that follows a normal
distribution. The order determination of the ARMA model
is based on the Akaike information criterion defined as

AIC=-21n L+2n, (5)

where L and n are model parameters. Hence, p and g in
(4) can be obtained as the orders that can minimize (5).

4.2 | ISMA-optimized ESN

421 | ESN

The sparse ESN consists of an input layer, middle layer
(dynamic reservoir), and output layer. Several hidden
neurons constitute the dynamic unit of the ESN, which
establishes short-term memory. The prediction perfor-
mance of the ESN is several times better than that of
conventional neural networks. Hence, we use the ESN to
predict the nonlinear components of network traffic. Its
output, N(k), can be expressed as

Nk =37 woix(k). (6)

i=1

This formula implies that the weight matrix expected
by the ESN should minimize the mean square error of
the system:

Wou= (M1 xT)", (7)

where M and T are the input and output matrices,
respectively.

The ESN performance is drastically affected by the
reservoir parameters. Four parameters are considered:
connection weight spectrum radius SR, reservoir size N,
input scale IS, and sparsity SD. We optimize these param-
eters using the ISMA.

422 | ISMA
The slime mold algorithm (SMA) performs swarm intelli-
gence optimization. The algorithm imitates the behavioral
characteristics of the slime mold during foraging and intro-
duces weights to simulate the correlation between the con-
traction mode of its venous wall and its shape change [26].
Compared with conventional optimization algorithms,
such as particle swarm optimization, differential evolution,
and genetic algorithms, the SMA has a higher solving
efficiency and faster convergence, being suitable for solv-
ing practical engineering optimization problems. There-
fore, we use the ISMA to optimize the ESN.

Slime molds approach food by smell that propagates
in the air. The position update for a slime mold
approaching food can be expressed as
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rand().(UC —LC) +LC, rand() <z
Ip(t)+mb-(W-w-I4(t) —Ip(t)), r<p,
me-I(t),

Inew =

r2p,

(8)
where
p=tanh |j(t)—DE|, 9)

LC and UC are the lower and upper bounds of the search
space, respectively, mb is in range [—k, k], mc decreases
linearly from 1 to O, ¢ is the current iteration number, I,
is the currently highest concentration of food, I is the cur-
rent position of the slime mold, I4 and I represent two
randomly selected slime molds, W is the weight of the
slime mold, j(t) is the fitness value of I, and DE is the
optimal fitness value. We calculate k as follows:

1
k =arctanh (— maxT+ 1), (10)

where maxT denotes the maximum number of itera-
tions. The weight of the slime mold, W, is updated as
follows:

(bF —Jj(@) )
1+r.log| ——=+1]), A,
. bF —wF
W (SmellIndex(i)) = bF— (i)
_ —Ju
1 r.log(bF_WFJrl), B,
(11)
Smelllndex = sort(j), (12)

where A represents the top half of the population after
ranking, B represents the remaining population, r is a
random value between 0 and 1, bF and wF are the cur-
rently best and worst fitness values, respectively, and
Smelllndex is the sequence of fitness values.

We propose a weight updating method, in which the
iteration time of the SMA is shortened owing to random
characteristics. This improvement is aimed to introduce a
weight into the standard SMA individual update and
improve the diversity of newly generated individuals
through random weights, thereby avoiding an imbalance
between exploration and exploitation. The update of the
random weight is given by (13). The update of the popu-
lation position after introducing the random weight is
given by (14).

W=Wnin + (Wmax — Wmin ) -1and() +¢-randn(), (13)

rand().(UC —LC)+LC, rand() <z,
w-Ip(t)+mb- (W-w-I4(t) —Ip(t)), r<p, (14)
me-w-1(t), r2p,

Inew =

where Wi, and wpa, are the minimum and maximum
of the random weight, respectively, rand() is a random
number uniformly distributed between 0 and 1, and o is
the standard deviation used to determine the error
between the weight and expected value. The improved
updating method described by (13) and (14) allows the
SMA to jump out of a local optimum at the beginning of
search and search over a wider range. In late stages, the
improved strategy completes search within a small
range, thereby enhancing the optimization ability of
the SMA.

4.2.3 | Optimization

The process to obtain the ISMA-optimized ESN is as fol-
lows. The four parameters of the ESN dynamic reservoir
are regarded as individuals in the ISMA, and the optimal
value is determined iteratively. Optimization proceeds as
follows:

Step 1 The parameters are initialized, including the pop-
ulation size, N, maximum number of iterations,
maxT, and parameter z. The initial population
position is also generated.

Step 2 The fitness function per iteration is given by (15),
and the fitness values of all individuals are evalu-
ated. Smelllndex is generated by ranking the fit-
ness values. Then, bF and wF are obtained. The
weight of the mold is calculated using (11).

RMSE = (15)

where N is the number of samples and y; and y,
are the real and predicted values of the sample,
respectively.

Step 3 The random weight is recalculated based on (13).
The individual position is updated using (14).
Subsequently, the parameters that should be opti-
mized, I,, are calculated. In this iteration, by
rejudging the size of the two fitness values, the
smaller one is taken as the optimal value. Simul-
taneously, the current position is set as the opti-
mal position for the population.
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Step 4 The individual fitness is calculated, and the global
optimal position of the population is updated.
Parameter k can be obtained using (10), and
parameter b is calculated using (16). The global
optimal position of the population is the updated.

T

b=1- .
maxT

(16)

Step 5 When the condition for jumping out of the loop is
satisfied, the last iteration index is considered as
the maximum number of iterations. If the termi-
nation conditions are satisfied, the four optimized
dynamic reservoir parameters (SR, N, IS, and SD)
are output. Otherwise, steps 1-5 are repeated to
continue the optimization.

5 | EVALUATION AND RESULTS
We verified the effectiveness of the proposed network
traffic prediction model through comparisons considering
two types of network traffic data.

5.1 | Datasets

Two datasets were collected in this study. Dataset A was
obtained from fixed network traffic of a router on campus
with a sampling period of 1 h. Dataset B was obtained
from mobile network traffic of a mobile base station with
a sampling period of 5 min. We collected 300 samples per
dataset. The training and test sets were obtained by
splitting in a ratio of 5:1. The two network traffic datasets
exhibited periodicity and randomness, as shown in
Figure 2. Within a short period, the network traffic had no
obvious change law. When considering a larger period, the
network traffic showed a similar change trend. Network
traffic has both nonlinear and linear characteristics, which
are the premises for designing the prediction model.

— Dataset A

Network traffic/MB

0 50 100 150 200 250 300

Time (h)
— Dataset B

i
1

1000/ 1 P
1

5001 ! q
1
1
1

| |
(10 50 100 150 200 250 300
Time (x5 min)

Network traffic/MB

FIGURE 2 Network traffic datasets collected in this study.

5.2 | Performance indicators
The following performance indicators were used for com-
parison between different models to verify the effective-
ness of the proposed model.

Root mean square error (RMSE):

1 N —
RMSE = \/NZH (T(k) — Tk))>. (17)
Mean absolute error (MAE):
1 N —
MAE :NZH | T(k)—T(k)|. (18)
Mean absolute percentile error (MAPE)
1 N —
MAPE = Nzkzl | T(k) —T(k)| x100/T(k).  (19)
Relative RMSE (RRMSE):
1w (T(k)-T(k)\’
RRMSE = \/ Nzk_l( ) . (20)
Square sum error (SSE):
N _
SSE=Y"" (T(k)-T(k))". (21)
Coefficient of determination (R?):
o1 2 (T(R) = T(k)"
=1-=3 > (22)
2 k=1 (T(k) — Tm)
Theil inequality coefficient (TIC):
VS (10 - T(0)’
TIC = = - ——. ()
VSN TR + AN TR
Index of agreement (IA):
N I 2
T(k)—T(k
A—1 > =1 (T(k) = T(k)) (24)

SN (IT(k) — Tm| + |T(k) + Tm])*

In (17)-(24), N is the number of samples and T(k),
T(k), and Tm are the real, predicted, and average net-
work traffic values, respectively.
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The effectiveness of the prediction model can also be
evaluated statistically using methods such as the Wil-
coxon signed-rank and rank-sum tests. These nonpara-
metric hypothesis tests can easily determine whether a
prediction is consistent with the real value.

5.3 | Comparison models

Three single prediction models and two combined predic-
tion models were selected for comparison. The single
models were an ARIMA model [10], SVM [11], and
ESN [14]. The two combined models were wavelet trans-
form with multiple model fusion [23] and VMD with
multi-reservoir ESN [25]. The parameters of the compari-
son models were selected according to either a conven-
tional algorithm or the values recommended in the
literature.

For the ISMA adopted in this study, we set the popu-
lation size to 20, maximum number of iterations to
100, and z in (14) to 0.03. The ranges of the reservoir
parameters to be optimized were SR, IS, SD € [0.01, 1)
and N € [10, 200]. The sample sequence had a length [ of
30. The detailed parameters of the proposed and compari-
son models are listed in Table 1.

54 | Results

The ARMA model was applied to the network traffic
training set and then to predict that set again. The differ-
ence between the prediction and original training data
was used to generate the training set of prediction errors

TABLE 1 Prediction model parameters.
Prediction
model Dataset A

Proposed model
N = 65, IS = 0.4630, SD = 0.5563

ARMA model: p = 4, g = 2. ESN: SR = 0.4642,

ETRI Journal—WI LEYM

for the ISMA-optimized ESN. The prediction results of
the ARMA model and training set of prediction errors for
datasets A and B are shown in Figures 3 and 4, respec-
tively. The prediction of the ARMA model showed a lin-
ear trend, indicating that it suitably fit the linear
component of network traffic.

After obtaining the model parameters of the ARMA
model and ESN, the two network traffic test sets were
predicted. Figures 5 and 6 show the predictions of the
ARMA model for network traffic and ESN for network
traffic prediction error, respectively. The ARMA model
and ESN achieved good prediction results.

The predictions of the ARMA model and ESN were
added to obtain the final prediction. The predictions of
the five comparison models were also obtained. The com-
parison results for datasets A and B are shown in
Figures 7 and 8, respectively. The proposed prediction
model Dbetter described changes and internal

T
151 —Real value = Predicted value =+ Predicted error | |

Network traffic/MB

1
0 50 100 150 200 250

Time (h)

FIGURE 3
average (ARMA) model on training set and corresponding

Prediction results of autoregressive moving

prediction error for dataset A.

Dataset B

ARMA model: p = 4, g = 3. ESN: SR = 0.5128, N = 52,
IS = 0.5152, SD = 0.4903

p=5d=2q=3
C =7.6652, g = 10.3305

ARIMA model p=5d=2,q9=3
SVM C =3.5562, g = 12.4561
ESN SR = 0.3748, N = 52, IS = 0.5241, SD = 0.5108

Wavelet transform
with multiple
model fusion

VMD with multi-
reservoir ESN

Ca: ARIMA (5, 3, 2). Cd1: y =20.7651, 5% = 9.0083,
m=28. Cd2: y =11.0052, §* = 27.3302, m = 26. Cd3:
y =17.0870, 5 =19.8892, m =25

No. decomposition layers = 6, population size = 20,
maximum number of iterations = 100, iterative
adjustment coefficient = 0.2, exponential
factors = 2, 1.5

SR = 0.3845, N = 61, IS = 0.4125, SD = 0.4251

Ca: ARIMA (5, 2, 2). Cd1: y = 16.0093, 5% =21.9836,
m=130. Cd2: y = 14.8762, §* = 18.9063, m = 28. Cd3:
y=13.0072, & =13.7084, m =28

No. decomposition layers = 5, population size = 20,
maximum number of iterations = 100, iterative
adjustment coefficient = 0.2, exponential
factors = 2, 1.5

Abbreviations: ARIMA, autoregressive integrated moving average; ESN, echo state network; SVM, support vector machine; VMD, variational mode

decomposition.
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=3
S

Network traffic/MB
(=)
(=3
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I
150 200 250

0 50 100
Time (x5 min)
FIGURE 4 Prediction results of autoregressive moving

average (ARMA) model on training set and corresponding
prediction error for dataset B.

<10’
Dataset A .

T —Real value
*# Predicted value

Network traffic/MB

Network traffic/MB

0 25 30 35 40 45 50
Time (X5 min)

FIGURE 5 Prediction results of autoregressive moving
average (ARMA) model on two datasets.
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% =* Predicted value
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Time (<5 min)
FIGURE 6 Prediction results of echo state network (ESN) on
two datasets.

characteristics of network traffic. Therefore, our model
was superior to the comparison models.

Figures 9 and 10 show the distribution of prediction
errors of the proposed and comparison models for data-
sets A and B, respectively. The prediction error of the
proposed model was smaller, indicating its higher fitting
ability.

Network traffic/MB

I
0 5 10 15 20 25 30 35 40 45 50

Time (h)
FIGURE 7 Results of prediction models for dataset A (a, real

value; b, proposed model; c, autoregressive integrated moving
average [ARIMA] model; d, support vector machine [SVM]; e, echo
state network [ESN]; f, wavelet transform with multiple model
fusion; g, variational mode decomposition [VMD] with multi-
reservoir ESN).

Network traffic/MB
o
S

0 5 10 15 20 2‘5 30 35 40 45 50
Time (X5 min)
FIGURE 8

value; b, proposed model; c, autoregressive integrated moving
average [ARIMA] model; d, support vector machine [SVM]; e, echo

Results of prediction models for dataset B (a, real

state network [ESN]; f, wavelet transform with multiple model
fusion; g, variational mode decomposition [VMD] with multi-
reservoir ESN).
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FIGURE 9 Prediction error of proposed and comparison

models for dataset A (a, proposed model; b, autoregressive
integrated moving average [ARIMA] model; ¢, support vector
machine [SVM]; d, echo state network [ESN]; e, wavelet transform
with multiple model fusion; f, variational mode decomposition
[VMD] with multi-reservoir ESN).
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Tables 2 and 3 list the performance indicators given
by (17)-(24) of the evaluated prediction models for data-
sets A and B, respectively. The RMSE, MAE, MAPE,
RRMSE, SSE, and TIC of the proposed model were smal-
ler than those of the comparison models. In addition, the
IA and R® value of the proposed model were closer to
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FIGURE 10 Prediction error of proposed and comparison

models for dataset B (a, proposed model; b, autoregressive
integrated moving average [ARIMA] model; c, support vector
machine [SVM]; d, echo state network [ESN]; e, wavelet transform
with multiple model fusion; f, variational mode decomposition
[VMD] with multi-reservoir ESN).
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1 compared with the other models. These results confirm
the excellent performance of the proposed prediction
model, indicating its high regression performance.

Table 4 lists the results of the Wilcoxon signed-rank
and rank-sum tests of the prediction models. The signifi-
cance threshold was set at p < 0.05. The p-value of the
Wilcoxon signed-rank test of the proposed prediction
model was higher than that of the comparison models.
The median difference between the predicted and real
values was smaller for the proposed model than for the
comparison models. Furthermore, the p-value of the Wil-
coxon rank-sum test of the proposed model was greater
than that of the comparison models. Thus, compared
with the other models, the predicted value of the pro-
posed model was closer to the average of the real values.
The results of the two tests showed that the predicted
values of the proposed prediction model were more con-
sistent with the real network traffic.

Table 5 shows the computation times for training
and prediction using the evaluated models for dataset A.
The results were obtained using a computer equipped
with an Intel(R) Core (TM) i5-6200U @ 2.30 GHz pro-
cessor with 4 GB in memory. The proposed prediction

TABLE 2 Performance indicators of prediction models for dataset A.
Prediction model RMSE (MB) MAE (MB)
Proposed model 2.5375e + 3 2.0013e + 3
ARIMA model 5.0117e + 3 4.4454e 4 3
SVM 5.0500e + 3 4.4014e + 3
ESN 5.0982¢ + 3 4.2489% + 3
Wavelet transform with 4.8205e + 3 4.1974e + 3

multiple model fusion
VMD with multi-reservoir ESN  4.3741e + 3 3.7007e + 3

MAPE (%) RRMSE SSE (MB?>) TIC R? IA
9.2811 0.2086 03219 +9  0.0220 0.9937  0.9994
25.5006 0.5027 1.2558e +9  0.0434 09753  0.9976
23.2335 0.5352 1.2751e +9  0.0435 09749  0.9976
27.0833 0.5591 1.2996e +9  0.0438 09744  0.9975
21.9443 0.4334 1.1619e +9 0.0416 09771  0.9977
18.1170 0.3618 0.9566e +9  0.0377 0.9812  0.9982

Abbreviations: ARIMA, autoregressive integrated moving average; ESN, echo state network; IA, index of agreement; MAE, mean absolute error; MAPE, mean
absolute percentile error; RMSE, root mean square error; RRMSE, relative RMSE; SSE, square sum error; SVM, support vector machine; TIC, Theil inequality

coefficient; VMD, variational mode decomposition.

TABLE 3 Performance indicators of prediction models for dataset B.
Prediction model RMSE (MB) MAE (MB)
Proposed model 11.7464 10.1857
ARIMA model 20.0600 17.0789
SVM 24.0732 13.6563
ESN 16.8391 13.6563
Wavelet transform with 21.3097 18.3393

multiple model fusion
VMD with multi-reservoir ESN  18.5844 16.7293

MAPE (%) RRMSE SSE (MB?> TIC R? IA

1.1575 0.0134 0.6898e +4  0.0066 0.9455  0.9993
1.9417 0.0229 2.0120e +4 00113 0.8411  0.9971
2.4636 0.0273 2.8976e +4 00135 0.7711  0.9974
1.5580 0.0194 1.4178¢e +4  0.0095 0.8880  0.9976
2.0970 0.0245 22705e +4 0.0120 0.8206  0.9982
1.8927 0.0210 1.7269¢ +4  0.0105 0.8636  0.9985

Abbreviations: ARIMA, autoregressive integrated moving average; ESN, echo state network; IA, index of agreement; MAE, mean absolute error; MAPE, mean
absolute percentile error; RMSE, root mean square error; RRMSE, relative RMSE; SSE, square sum error; SVM, support vector machine; TIC, Theil inequality
coefficient; VMD, variational mode decomposition.
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TABLE 4 Results of Wilcoxon signed-rank and rank-sum tests.
Signed-rank test Rank-sum test Signed-rank test Rank-sum test

Prediction model (dataset A) (dataset A) (dataset B) (dataset B)

Proposed model 0.9064 0.9259 0.9211 0.9194

ARIMA model 0.6592 0.6698 0.7130 0.7767

SVM 0.7397 0.7972 0.7840 0.8266

ESN 0.8216 0.8288 0.8266 0.8485

Wavelet transform with multiple model fusion 0.8480 0.8577 0.8430 0.8753

VMD with multi-reservoir ESN 0.8662 0.8933 0.8769 0.8949

Abbreviations: ARIMA, autoregressive integrated moving average; ESN, echo state network; SVM, support vector machine; VMD, variational mode

decomposition.

TABLE 5
evaluated models (dataset A as an example).

Computation time for training and prediction using

Training Prediction

Prediction model time (s) time (s)
Proposed model 165.3350 0.1032
ARIMA model 17.2268 0.0324
SVM 72.0364 0.0431

ESN 21.3629 0.0617
Wavelet transform with 216.3642 0.2249
multiple model fusion

VMD with multi-reservoir 244.0240 0.2038

ESN

Abbreviations: ARIMA, autoregressive integrated moving average; ESN,
echo state network; SVM, support vector machine; VMD, variational mode
decomposition.

model improved the overall prediction performance and
accuracy, but the computation time was slightly
increased compared with some comparison models. Nev-
ertheless, considering the sampling time of common net-
work traffic, the proposed prediction model can achieve
real-time performance.

Comprehensively considering the evaluation results
including the comparisons of fitting, prediction error, his-
togram distribution, and performance and statistical indi-
cators, we can conclude that the proposed model is
superior to other prediction models.

5.5 | Discussion

The proposed prediction model has various advantages.
We can predict the network traffic by combining linear
and nonlinear models. The linear ARMA model can pre-
dict linear sequences, whereas the ISMA-optimized ESN
with a good fit determines nonlinear components. The
combination of these two models improves the accuracy

Network traffic samples
v

Preprocessing

Y

Training of prediction

model
S ¢

Prediction
v
Application

Target network

‘o
S8l e ;/
=

Network traffic collection module Network traffic prediction module

: !

Network traffic dataset

FIGURE 11 Diagram of network traffic prediction system.

of network traffic prediction. Owing to model characteris-
tics, separate linear and nonlinear models cannot guaran-
tee a good prediction performance for network traffic
that contains both linear and nonlinear components.
When predicting network traffic, the proposed prediction
model adequately extracts linear and nonlinear compo-
nents of network traffic as well as valuable information
from the error to achieve more accurate network traffic
prediction. In contrast, existing models have neglected
useful information contained in the prediction error.
Therefore, combining linear and nonlinear models for
network traffic prediction has important theoretical and
practical value.

Although the proposed network traffic prediction
model achieved good performance, the ESN was selected
as the prediction model for the prediction error, and its
parameters were optimized using the ISMA. As a model
of the nonlinear prediction error, the ESN substantially
influences the final prediction performance. The parame-
ters optimized by the ISMA can improve the regression
performance of the ESN, but the ESN reservoir is
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generated randomly. Consequently, a reservoir with the
same number of neurons and spectral radius will show
notable differences in performance owing to its internal
structure and affect the nonlinear description of network
traffic by the ESN.

Figure 11 illustrates the implementation of the net-
work traffic prediction system in practice. This system
comprises three main parts. The first part is the network
traffic acquisition module, which collects network traffic
from a target network using hardware or software tools.
The second part is the traffic data storage module, which
stores the collected network traffic in a dataset and
retrieves it when necessary. The third part is the most
important network traffic prediction module. First, net-
work traffic samples are collected and preprocessed.
Then, network traffic is predicted using the pretrained
model. Finally, the prediction results are applied to prac-
tical scenarios such as congestion early warning and net-
work optimization.

6 | CONCLUSIONS

To suitably plan and optimize a network, enable early
warning of network problems, and guarantee security,
stability, and normal operation of a network, network
traffic should be predicted with high accuracy.
Constructing an appropriate mathematical model and
improving the prediction accuracy of network traffic
are research hotspots in network management. We intro-
duce a network traffic prediction model considering the
combination of linear and nonlinear components. These
components are treated differently, and the correspond-
ing prediction models are established. An ARMA model
predicts the linear components, and an ISMA-optimized
ESN predicts the nonlinear components. The final predic-
tion result is jointly determined by adding the prediction
results of the ARMA model and ESN. The proposed pre-
diction model was verified, and the prediction of real net-
work traffic data provided good results. The proposed
prediction model has theoretical support and practical
applicability for improving network management and
performance indicators. In future work, we will focus on
improving the structure of the ESN reservoir and
strengthening the connectivity of neurons in the reservoir
to further improve the fitting ability for nonlinear data.
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