• 제목/요약/키워드: Linear Motion Actuator

검색결과 163건 처리시간 0.025초

초정밀 3축 이송 스테이지의 개발 : 2. 제작 및 성능 평가 (Development of 3-axis fine Positioning Stage : Part 2. Fabrication and Performance Evaluation)

  • 강중옥;백석;한창수;홍성욱
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.155-162
    • /
    • 2004
  • This paper presents the fabrication procedure and the experiments for the 3-axis fine positioning stage proposed in[1]. First, the dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the stage design specifications. Secondly, the performance of the stage is also evaluated on the accuracy associated with linear positioning, angular error, and straightness error. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning. Through the analysis and experiment, the developed fine positioning stage are found to have a long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design.

LPM의 동추력특성측정 및 선형화 제어기법 개발 (A Development of dynamic characteristics measuring system and linearization control method for Linear Pulse Motor)

  • 김문환;이남기;김국헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2146-2148
    • /
    • 1997
  • We had developed a prototype Linear Pulse Motor(LPM) for the linear motion actuator. In this paper, it is mentioned a new dynamic equations which is considered the nonlinearity of the thrust force of LPM. And a measuring method of ripples in the thrust forces is proposed and the ripples were measured in the laboratory. In the experimental results, it is shown the validity of the proposed measuring method for catching of the ripple values and waveforms in the thrust force.

  • PDF

리니어모터 스테이지 진직도 보상 제어

  • 강민식;최정덕
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2007년도 춘계학술대회
    • /
    • pp.11-14
    • /
    • 2007
  • An additive servo-system is developed to improve straightness of linear motor stages. For linear motor stages used in the field of high-precision linear motion process, high straightness accuracy is necessary as well as positioning accuracy in the longitudinal axis. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to modeling error and friction disturbance, a sliding mode control is addressed. The effectiveness of the suggested mechanism and the control are illustrated along with some experimental results.

  • PDF

원통형 LPM의 설계 및 제작기법에 관한 연구 (A development of cylindrical type Linear Pulse Motor)

  • 김문환;이남기;안종보;김국헌;이동영;이상진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2073-2075
    • /
    • 1998
  • A cylindrical type Linear Pulse Motor (LPM) was designed as a linear motion actuator. In this paper, it is mentioned the mechanical design method of the LPM. It was designed as a prototype to estimate a new linearization control method for the nonlinear thrust force which is caused by the variable reluctance of the LPM. The designed LPM is determined a variable reluctance type to except the term of permanent magnetic force. The concreted figures and the dimensions will be described.

  • PDF

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

가동차 위치에 따른 인덕턴스 변화와 Push/Pull 효과를 고려한 가동코일형 LOA의 동특성 (Dynamic Characteristics of Moving Coil Linear Oscillatory Actuator Considering the Variable Inductance and Push/pull Effects)

  • 정상섭;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권7호
    • /
    • pp.307-314
    • /
    • 2001
  • A moving coil linear oscillatory actuator is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The variation of mover position and the consequent changes of coil flux path affect the coil inductance, because coil flux leaks at the open region of LOA stator. The interaction between permanent magnet and armature field is to shift the airgap flux density variation due to the magnet alone by a certain amount. The unbalanced reciprocation force due to armature reaction field decreases the advantage of moving coil LOA, such as a high degree of linearity and controllability in the force ad motion control. This paper firstly describes the coil inductance, the deviation of flux density, and the unbalanced reciprocation force, which are derived form the permeance model of LOA. Secondly, the analytical method are verified using the 2D finite element method and tests. Finally, the dynamic simulation algorithm taking the armature reaction effect and variable inductance into account, is proposed and confirmed through the experiment.

  • PDF

가동코일형 리니어 왕복 액추에이터의 동특성 (Dynamic Characteristics of Moving Coil Type Linear Oscillatory Actuator)

  • 장석명;정상섭;권철;박희창;문석준;박찬일;정태영
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.180-187
    • /
    • 2000
  • A moving-coil-type linear oscillatory actuator(LOA) consists of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure. The LOA system was represented by the voltage equation of coil and the mechanical equation of motion. This set of equations was manipulated in state-space form. The EMF constant kE of equation parameters in state-space form can be obtained by using the induced voltage in armature coils at open circuit test. kE and other parameters provide the system matrices and transfer function for frequency response and dynamic simulation. Voltage source inverter-fed LOA is examined aiming to compare with results of simulation.

  • PDF

밸브구동용 보이스 코일 선형 포스모터 설계와 해석 연구 (A Study on the Design and Analysis of a Voice Coil Linear Force Motor for Hydraulic Valve)

  • 박창순;허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.1-7
    • /
    • 2012
  • The voice coil linear force motor is a kind of a direct drive motion device that uses a permanent magnetic field and coil winding to produce force. In order to design a voice coil linear force motor, an exact calculations of the required force, the flux density in air gap and the flux pathway are needed. A conventional method can be used usually to calculate the flux density in air gap, but with this method it is needed to find a magnetic circuit revision constant. In this paper a voice coil linear force motor is designed by conventional design method and analyzed by 3D simulation program "Flux". For the prototype linear force motor, the results of the calculated by conventional design method and the analyzed by 3D simulation program are compared with the test result. Finally it is showed that the magnetic circuit revision constant which is found by comparing of the analyzed and the measured data can be used for the design of the voice coil type linear force motor to minimize the trial and error.

외팔보 엑츄에이터 시스템 구조 및 구현에 관한 연구 (A Study on the Structural System and Implementation of Cantilever Actuator System)

  • 윤근영;백수황
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.651-656
    • /
    • 2019
  • 본 논문은 오염물질 제거를 위한 외팔보 엑츄에이터 시스템 구조 및 구현에 관한 연구이다. 건축물의 외벽에 설치되는 외관 자재들 중 특히 유리의 경우 외부 노출로 인해 단기간에 오염이 된다. 이와 같은 오염물질은 미관상의 퇴색은 물론 사용자에게 보건상의 문제를 야기할 수 있다. 또한 최근 신재생에너지원으로 태양광 패널에 대한 수요가 많이 증가되고 있는데, 이와 같은 태양광 패널의 발전량은 먼지 등에 의해 감소될 수 있으며, 입사량의 감소는 결국 발전량을 저해하는 문제를 야기할 수 있기 때문에 먼지와 같은 오염물질을 주기적으로 제거하는 방안이 필요하다. 일반적으로 전문 작업자가 외벽에 붙은 오염물질을 제거하는 경우가 많은데, 안정성을 확보하였다 하더라도 현장에서 발생하는 여러 가지 돌발 변수로 인해 사고가 종종 발생하고 있다. 따라서 이와 같은 단점을 극복하기 위하여 외팔보 엑츄에이터 구조 시스템을 제안하였다. 외팔보 엑츄에이터에 대한 구조적인 시스템을 구성하고 시제품을 제작하여 동작성을 확인하였다. 최종적으로는 외팔보 엑츄에이터의 오염물질 제거에 대한 효용성을 검토하였다.

Mathematical modeling of actively controlled piezo smart structures: a review

  • Gupta, Vivek;Sharma, Manu;Thakur, Nagesh
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.275-302
    • /
    • 2011
  • This is a review paper on mathematical modeling of actively controlled piezo smart structures. Paper has four sections to discuss the techniques to: (i) write the equations of motion (ii) implement sensor-actuator design (iii) model real life environmental effects and, (iv) control structural vibrations. In section (i), methods of writing equations of motion using equilibrium relations, Hamilton's principle, finite element technique and modal testing are discussed. In section (ii), self-sensing actuators, extension-bending actuators, shear actuators and modal sensors/actuators are discussed. In section (iii), modeling of thermal, hygro and other non-linear effects is discussed. Finally in section (iv), various vibration control techniques and useful software are mentioned. This review has two objectives: (i) practicing engineers can pick the most suitable philosophy for their end application and, (ii) researchers can come to know how the field has evolved, how it can be extended to real life structures and what the potential gaps in the literature are.