• Title/Summary/Keyword: Lignocellulosic bioethanol

Search Result 37, Processing Time 0.03 seconds

Bioethanol Production Using Lignocellulosic Biomass-review Part 2. Saccharification and fermentation of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.15-23
    • /
    • 2010
  • Bio-ethanol is the most potential next generation automotive fuel for reducing both consumption of crude oil and environmental pollution from renewable resources such as wood, forest residuals, agricultural leftovers and urban wastes. Lignocellulosic based materials can be broken down into individual sugars. Therefore, saccharification is one of the important steps for producing sugars, such as 6-C glucose, galactose, mannose and 5-C xylose, mannose and rhamnose. These sugars can be further broken down and fermented into ethanol. The main objective of this research is to study the feasibility and optimize saccharification and fermentation process for the conversion of lignocellulosic biomass to low cost bioethanol.

A Research Trend of Pretreatment in Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review (목질계 바이오에탄올 생산의 전처리 기술에 관한 연구동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.274-286
    • /
    • 2009
  • Lignocellulosic biomass is the most abundant raw material for bioconversion in many country. However the high costs for pretreatment and enzymatic hydrolysis currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into intermediates that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of pretreatment with lignocellulosic biomass in bioethanol production process.

A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review (목질바이오매스의 효소 당화 기술에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.

Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.1-14
    • /
    • 2010
  • Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

A Research Trend on Utilization of the Byproducts(Lignin) from Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review (목질바이오매스 에너지 부산물(리그닌)이용에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.3
    • /
    • pp.183-194
    • /
    • 2011
  • This study reviewed on the research trend of sources and utilization of the byproducts(Lignin) from bioethanol production process with lignocellulosic biomass such as wood, agri-processing by-products(corn fiber, sugarcane bagasse etc.) and energy crops(switch grass, poplar, Miscanthus etc.). During biochemical conversion process, only Cellulose and hemicellulosic fractions are converted into fermentable sugar, but lignin which represents the third largest fraction of lignocellulosic biomass is not convertible into fermentable sugars. It is therefore extremely important to recover and convert biomass-derived Lignin into high-value products to maintain economic competitiveness of cellulosic ethanol processes. It was introduced that lignin types and characteristics were different from various isolation methods and biomass sources. Also utilization and potentiality for market of those were discussed.

Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis (Pichia stipitis를 이용한 리그노셀룰로스계 바이오매스 기반의 바이오에탄올 생산)

  • Bae, Yang-Won;Seong, Pil-Je;Cho, Dae-Haeng;Shin, Soo-Jeong;Kim, Seung-Wook;Han, Sung-Ok;Kim, Yong-Hwan;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.533-538
    • /
    • 2010
  • We investigated the effect of inhibitory compounds derived lignocellulosic hydrolysates on cell growth, sugar consumption and ethanol productivity, and also we intended to identify the potential for ethanol production based on lignocellulosic hydrolysates. Cell growth and ethanol production in the presence of acetate were initiated after 12 hr. Furans showed a longer lag time and phenolics showed a significant effect on strain and ethanol production in comparison to other model compounds. In the case of lignocellulosic hydrolysates, the acetate strongly affected cell growth and ethanol production.

A review on thermochemical pretreatment in Lignocellulosic bioethanol production (목질계 바이오에탄올 제조공정에서 열화학적 전처리에 관한 고찰)

  • Ko, Jae-Jung;Yun, Sang-Leen;Kang, Sung-Won;Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • The production of bioethanol, which is one of the alternative fuel, cause the various problem such as agflation in human society. As a substitute for the feedstock, lignocellulosic biomass have a big potential. However, bioethanol production with cellulosic material is not commercialized due to high cost. Thermochemical pretreatment to improve the rate of enzyme hydrolysis and increase the recovery of fermentable sugar, is required in order to achieve the cost down in bioethanol production. In this study, various problems and technologies for pretreatment is introduced. Acid hydrolysis, alkali hydrolysis, steam explosion, organosolv process, ammonia explosion, and wet oxidation pretreatment remove lignin and hemicellulose, and reduce cellulose crystallinity. Optimization of pretreatment process on various sources of lignocellulosic biomass such as softwood, hardwood, and straw should be performed.

  • PDF

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

Material and Heat Balances of Bioethanol Production Process by Concentrated Acid Saccharification Process from Lignocellulosic Biomass (목질계 Biomass로부터 강산 당화 공정에 의한 Bioethanol 생산 공정의 물질 및 열수지)

  • Kim, Hee-Young;Lee, Eui-Soo;Kim, Won-Seok;Suh, Dong-Jin;Ahn, Byoung-Sung
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.156-165
    • /
    • 2011
  • The process for bioethanol production from lignocellulosic biomass was studied through process simulation using PRO/II. Process integration was conducted with concentrated acid pretreatment, hydrolysis process, SMB (simulated moving bed chromatography) process and pervaporation process. Energy consumption could be minimized by the heat recovery process. In addition, material and energy balance were calculated based on the results from the simulation and literature data. A net production yield of 4.07 kg-biomass and energy consumption value of 3,572 kcal per 1 kg ethanol were calculated, which is indicating that 26% yield increase and 30% energy saving compared to the bioethanol production process with dilute-acid hydrolysis (SRI report). In order to make it possible, sugar conversion yield of cellulose and hemi-cellulose is to be reached up to 90% and fermentation of xylose needs to be developed. In order to reduce the energy consumption up to 30%, the concentration of acid solution after being separated by 5MB should exceed 20%. If acid/sugar separation by SMB process is to be practical, the bioethanol process designed in this study can be commercially feasible.