Browse > Article

Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis  

Bae, Yang-Won (Department of Chemical Engineering, Kwangwoon University)
Seong, Pil-Je (Department of Chemical Engineering, Kwangwoon University)
Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University)
Shin, Soo-Jeong (Department of Wood and Paper Science, Chungbuk National University)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Han, Sung-Ok (School of Life Science and Biotechnology, Korea University)
Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University)
Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
Publication Information
KSBB Journal / v.25, no.6, 2010 , pp. 533-538 More about this Journal
Abstract
We investigated the effect of inhibitory compounds derived lignocellulosic hydrolysates on cell growth, sugar consumption and ethanol productivity, and also we intended to identify the potential for ethanol production based on lignocellulosic hydrolysates. Cell growth and ethanol production in the presence of acetate were initiated after 12 hr. Furans showed a longer lag time and phenolics showed a significant effect on strain and ethanol production in comparison to other model compounds. In the case of lignocellulosic hydrolysates, the acetate strongly affected cell growth and ethanol production.
Keywords
bioethanol; lignocellulose; hydrolysate; inhibitory compound; Pichia stipitis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conv. Manag. 52: 858-875.   DOI   ScienceOn
2 Keating, J. D., C. Panganiban, and S. D. Mansfield (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206.   DOI   ScienceOn
3 Ando, S., I. Arai, K. Koichi, and S. Hanai (1986) Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J. Ferment. Technol. 64: 567-670.   DOI   ScienceOn
4 Agbogbo, F. K., G. Coward-Kelly, M. Torry-Smith, and K. S. Wenger (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 41: 2333-2336.   DOI   ScienceOn
5 De Wulf, O., P. Thonart, P. Gaignage, M. Marlier, A. Paris, and M. Paquot (1986) Bioconversion of vanillin to vanillyl alcohol by Saccharomyces cerevisiae. Biotechnol. Bioeng. Symp. 17: 605-616.
6 Klinke, H. B., L. Olsson, A. B. Thomsen, and B. K. Ahring (2003) Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng. 81: 738-747.   DOI   ScienceOn
7 Cho, D. H., S. -J. Shin, Y. Bae, C. Park, and Y. H. Kim (2010) Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis. Bioresource Technol. 101: 4947-4951.   DOI   ScienceOn
8 Modig, T., G. Lidén, and J. Taherzadeh (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363: 769-776.   DOI   ScienceOn
9 Boopathy, R., H. Bokang, and L. Daniels (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. Biot. 11: 147-150.   DOI
10 Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biot. 66: 10-26.   DOI   ScienceOn
11 Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. De Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409-415.   DOI   ScienceOn
12 Russell, J. B. (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J. Appl. Microbiol. 73: 363-370.   DOI
13 Keating, J. D., C. Panganiban, and S. D. Mansfield (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206.   DOI   ScienceOn
14 Clark, T. A. and K. L. Mackie (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J. Chem. Technol. Biot. 34B: 101-110.
15 Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulosic degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzyme. Microb. Tech. 19: 220-225.   DOI   ScienceOn
16 Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol. 83: 1-11.   DOI   ScienceOn
17 Saha, B. C. (2003) Hemicellulose bioconversion. J. Ind. Microbiol. Biot. 30: 279-291.   DOI   ScienceOn
18 Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96: 673-686.   DOI   ScienceOn
19 Modig, T., J. R. M. Almeida, M. F. Gorwa-Grauslund, and G. Liden (2008) Variability of the response of saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol. Bioeng. 100: 423-429.   DOI   ScienceOn
20 Liu, Z. L., P. J. Slininger, and S. W. Gorisich (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Biochem. Biotech. 121-124: 451-460.
21 Sakai, S., Y. Tsuchida, S. Okino, O. Ichihashi, H. Kawaguchi, T. Watanabe, M. Inui, and H. Yukawa (2007) Effect of lignocellulose-deribed inhibitors on growth of ethanol production by growth-arrested Corynebacterium glutamicum $R^{\nabla}$. Appl. Environ. Microb. 73: 2349-2353.   DOI   ScienceOn
22 Faracoa, V. and Y. Hadarc (2011) The potential of lignocellulosic ethanol production in the Mediterranean Basin. renew. sust. energ. rev. 15: 252-266.   DOI   ScienceOn
23 Almeida, J. R. M., T. Modig, A. Röder, G. Liden, and M. F. Gorwa-Grauslund (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnol. Biofuels 1: 12.   DOI
24 Tolan, J. S. and R. K. Finn (1987) Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi. Appl. Environ. Microb. 53: 2033-2038.
25 Nigam, J. N., R. S. Ireland, A. Margaritis, and M. A. Lachance (1985) Isolation and screening of yeasts that ferment D-xylose directly to ethanol. Appl. Environ. Microb. 50: 1486-1489.
26 Luo, L., E. Voet, and G. Huppes (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in brazil. Renew. Sust. Energ. Rev. 13: 1613-1619.   DOI   ScienceOn