• Title/Summary/Keyword: Lightweight block cipher

Search Result 88, Processing Time 0.031 seconds

MILP-Aided Division Property and Integral Attack on Lightweight Block Cipher PIPO (경량 블록 암호 PIPO의 MILP-Aided 디비전 프로퍼티 분석 및 인테그랄 공격)

  • Kim, Jeseong;Kim, Seonggyeom;Kim, Sunyeop;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.875-888
    • /
    • 2021
  • In this paper, we search integral distinguishers of lightweight block cipher PIPO and propose a key recovery attack on 8-round PIPO-64/128 with the obtained 6-round distinguishers. The lightweight block cipher PIPO proposed in ICISC 2020 is designed to provide the efficient implementation of high-order masking for side-channel attack resistance. In the proposal, various attacks such as differential and linear cryptanalyses were applied to show the sufficient security strength. However, the designers leave integral attack to be conducted and only show that it is unlikely for PIPO to have integral distinguishers longer than 5-round PIPO without further analysis on Division Property. In this paper, we search integral distinguishers of PIPO using a MILP-aided Division Property search method. Our search can show that there exist 6-round integral distinguishers, which is different from what the designers insist. We also consider linear operation on input and output of distinguisher, respectively, and manage to obtain totally 136 6-round integral distinguishers. Finally, we present an 8-round PIPO-64/128 key recovery attack with time complexity 2124.5849 and memory complexity of 293 with four 6-round integral distinguishers among the entire obtained distinguishers.

The fast implementation of block cipher SIMON using pre-computation with counter mode of operation (블록암호 SIMON의 카운터 모드 사전 연산 고속 구현)

  • Kwon, Hyeok-Dong;Jang, Kyung-Bae;Kim, Hyun-Ji;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.588-594
    • /
    • 2021
  • SIMON, a lightweight block cipher developed by the US National Security Agency, is a family of block ciphers optimized for hardware implementation. It supports many kinds of standards to operate in various environments. The counter mode of operation is one of the operational modes. It provides to encrypt plaintext which is longer than the original size. The counter mode uses a constant(Nonce) and Counter value as an input value. Since Nonce is the identical for all blocks, so it always has same result when operates with other constant values. With this feature, it is possible to skip some instructions of round function by pre-computation. In general, the input value of SIMON is affected by the counter. However in an 8-bit environment, it is calculated in 8-bit units, so there is a part that can be pre-computed. In this paper, we focus the part that can be pre-calculated, and compare with previous works.

A Study on Hardware Implementation of 128-bit LEA Encryption Block (128비트 LEA 암호화 블록 하드웨어 구현 연구)

  • Yoon, Gi Ha;Park, Seong Mo
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.39-46
    • /
    • 2015
  • This paper describes hardware implementation of the encryption block of the '128 bit block cipher LEA' among various lightweight encryption algorithms for IoT (Internet of Things) security. Round function blocks and key-schedule blocks are designed by parallel circuits for high throughput. The encryption blocks support secret-key of 128 bits, and are designed by FSM method and 24/n stage(n=1, 2, 3, 4, 8, 12) pipeline methods. The LEA-128 encryption blocks are modeled using Verilog-HDL and implemented on FPGA, and according to the synthesis results, minimum area and maximum throughput are provided.

Suggestion of CPA Attack and Countermeasure for Super-Light Block Cryptographic CHAM (초경량 블록 암호 CHAM에 대한 CPA 공격과 대응기법 제안)

  • Kim, Hyun-Jun;Kim, Kyung-Ho;Kwon, Hyeok-Dong;Seo, Hwa-Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.5
    • /
    • pp.107-112
    • /
    • 2020
  • Ultra-lightweight password CHAM is an algorithm with efficient addition, rotation and XOR operations on resource constrained devices. CHAM shows high computational performance, especially on IoT platforms. However, lightweight block encryption algorithms used on the Internet of Things may be vulnerable to side channel analysis. In this paper, we demonstrate the vulnerability to side channel attack by attempting a first power analysis attack against CHAM. In addition, a safe algorithm was proposed and implemented by applying a masking technique to safely defend the attack. This implementation implements an efficient and secure CHAM block cipher using the instruction set of an 8-bit AVR processor.

A Study on Pipeline Implementation of LEA Encryption·Decryption Block (LEA 암·복호화 블록 파이프라인 구현 연구)

  • Yoon, Gi Ha;Park, Seong Mo
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.9-14
    • /
    • 2017
  • This paper is a study on the hardware implementation of the encryption and decryption block of the lightweight block cipher algorithm LEA which can be used for tiny devices in IoT environment. It accepts all secret keys with 128 bit, 192 bit, and 256 bit sizes and aims at the integrated implementation of encryption and decryption functions. It describes design results of applying pipeline method for performance enhancement. When a decryption function is executed, round keys are used in reverse order of encryption function. An efficient hardware implementation method for minimizing performance degradation are suggested. Considering the number of rounds are 24, 28, or 32 times according to the size of secret keys, pipeline of LEA is implemented so that 4 round function operations are executed in each pipeline stage.

Implementation of LEA Lightwegiht Block Cipher GCM Operation Mode on 32-Bit RISC-V (32-Bit RISC-V상에서의 LEA 경량 블록 암호 GCM 운용 모드 구현)

  • Eum, Si-Woo;Kwon, Hyeok-Dong;Kim, Hyun-Ji;Yang, Yu-Jin;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • LEA is a lightweight block cipher developed in Korea in 2013. In this paper, among block cipher operation methods, CTR operation mode and GCM operation mode that provides confidentiality and integrity are implemented. In the LEA-CTR operation mode, we propose an optimization implementation that omits the operation between states through the state fixation and omits the operation through the pre-operation by utilizing the characteristics of the fixed nonce value of the CTR operation mode. It also shows that the proposed method is applicable to the GCM operation mode, and implements the GCM through the implementation of the GHASH function using the Galois Field(2128) multiplication operation. As a result, in the case of LEA-CTR to which the proposed technique is applied on 32-bit RISC-V, it was confirmed that the performance was improved by 2% compared to the previous study. In addition, the performance of the GCM operation mode is presented so that it can be used as a performance indicator in other studies in the future.

A Design of PRESENT Crypto-Processor Supporting ECB/CBC/OFB/CTR Modes of Operation and Key Lengths of 80/128-bit (ECB/CBC/OFB/CTR 운영모드와 80/128-비트 키 길이를 지원하는 PRESENT 암호 프로세서 설계)

  • Kim, Ki-Bbeum;Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1163-1170
    • /
    • 2016
  • A hardware implementation of ultra-lightweight block cipher algorithm PRESENT which was specified as a standard for lightweight cryptography ISO/IEC 29192-2 is described. The PRESENT crypto-processor supports two key lengths of 80 and 128 bits, as well as four modes of operation including ECB, CBC, OFB, and CTR. The PRESENT crypto-processor has on-the-fly key scheduler with master key register, and it can process consecutive blocks of plaintext/ciphertext without reloading master key. In order to achieve a lightweight implementation, the key scheduler was optimized to share circuits for key lengths of 80 bits and 128 bits. The round block was designed with a data-path of 64 bits, so that one round transformation for encryption/decryption is processed in a clock cycle. The PRESENT crypto-processor was verified using Virtex5 FPGA device. The crypto-processor that was synthesized using a $0.18{\mu}m$ CMOS cell library has 8,100 gate equivalents(GE), and the estimated throughput is about 908 Mbps with a maximum operating clock frequency of 454 MHz.

Improved Meet-in-the-Middle Attacks on Crypton and mCrypton

  • Cui, Jingyi;Guo, Jiansheng;Huang, Yanyan;Liu, Yipeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2660-2679
    • /
    • 2017
  • Crypton is a SP-network block cipher that attracts much attention because of its excellent performance on hardware. Based on Crypton, mCrypton is designed as a lightweight block cipher suitable for Internet of Things (IoT) and Radio Frequency Identification (RFID). The security of Crypton and mCrypton under meet-in-the-middle attack is analyzed in this paper. By analyzing the differential properties of cell permutation, several differential characteristics are introduced to construct generalized ${\delta}-sets$. With the usage of a generalized ${\delta}-set$ and differential enumeration technique, a 6-round meet-in-the-middle distinguisher is proposed to give the first meet-in-the-middle attack on 9-round Crypton-192 and some improvements on the cryptanalysis of 10-round Crypton-256 are given. Combined with the properties of nibble permutation and substitution, an improved meet-in-the-middle attack on 8-round mCrypton is proposed and the first complete attack on 9-round mCrypton-96 is proposed.

LCB: Light Cipher Block An Ultrafast Lightweight Block Cipher For Resource Constrained IOT Security Applications

  • Roy, Siddhartha;Roy, Saptarshi;Biswas, Arpita;Baishnab, Krishna Lal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4122-4144
    • /
    • 2021
  • In this fast-paced technological world, the Internet of Things is a ground breaking technology which finds an immense role in the present electronic world which includes different embedded sensors, devices and most other things which are connected to the Internet. The IoT devices are designed in a way that it helps to collect various forms of data from varied sources and transmit them in digitalized form. In modern era of IoT technology data security is a trending issue which greatly affects the confidentiality of important information. Keeping the issue in mind a novel light encryption strategy known as LCB is designed for IoT devices for optimal security. LCB exploits the benefits of Feistel structure and the architectural benefits of substitution permutation network both to give more security. Moreover, this newly designed technique is tested on (Virtex-7) XC7VX330T FPGA board and it takes much little area of 224 GE (Gate Equivalent) and is extremely fast with very less combinational path delay of 0.877 ns. An in-depth screening confirms the proposed work to promise more security to counter cryptographic attacks. Lastly the Avalanche Effect (AE) of LCB showed as 63.125% and 63.875% when key and plaintext (PT) are taken into consideration respectively.

Side-Channel Attacks on LEA with reduced masked rounds (축소 마스킹이 적용된 경량 블록 암호 LEA-128에 대한 부채널 공격)

  • Park, Myungseo;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.253-260
    • /
    • 2015
  • The side-channel attack is widely known as an attack on implementations of cryptographic algorithms using additional side-channel information such as power traces, electromagnetic waves and sounds. As a countermeasure of side channel attack, the masking method is usually used, however full-round masking makes the efficiency of ciphers dramatically decreased. In order to avoid such a loss of efficiency, one can use reduced-round masking. In this paper, we describe a side channel attack on the lightweight block cipher LEA with the first one~six rounds masked. Our attack is based on differentials and power traces which provide knowledge of Hamming weight for the intermediate data computed during the enciphering of plaintexts. According to our experimental result, it is possible to recover 25 bits of the first round key in LEA-128.