• 제목/요약/키워드: Lightlike submanifold

검색결과 59건 처리시간 0.023초

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • 제33권5호
    • /
    • pp.543-557
    • /
    • 2017
  • Jin [10] studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection. We study further the geometry of this subject. The object of this paper is to study the geometry of half lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection.

ON LIGHTLIKE SUBMANIFOLDS OF A GRW SPACE-TIME

  • Kang, Tae Ho
    • 대한수학회논문집
    • /
    • 제29권2호
    • /
    • pp.295-310
    • /
    • 2014
  • This paper provides a study of lightlike submanifolds of a generalized Robertson-Walker (GRW) space-time. In particular, we investigate lightlike submanifolds with curvature invariance, parallel second fundamental forms, totally umbilical second fundamental forms, null sectional curvatures and null Ricci curvatures, respectively.

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Gupta, Garima;Kumar, Rakesh
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.979-998
    • /
    • 2020
  • We study totally umbilical real half lightlike submanifolds of indefinite Kaehler manifolds with a quarter-symmetric metric connection. We obtain some conditions for a real half lightlike submanifold of an indefinite Kaehler manifold with a quarter-symmetric metric connection to be a product manifold. We derive the expression for induced Ricci type tensor 𝓡(0,2) and also obtain conditions for 𝓡(0,2) to be symmetric.

EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1163-1178
    • /
    • 2012
  • In this paper, we study the geometry of Einstein half lightlike submanifolds M of a semi-Riemannian space form $\bar{M}(c)$ subject to the conditions: (a) M is screen conformal, and (b) the coscreen distribution of M is a conformal Killing one. The main result is a classification theorem for screen conformal Einstein half lightlike submanifolds of a Lorentzian space form with a conformal Killing coscreen distribution.

A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.1041-1048
    • /
    • 2013
  • In this paper, we study the curvature of a semi-Riemannian manifold $\tilde{M}$ of quasi-constant curvature admits some half lightlike submanifolds M. The main result is two characterization theorems for $\tilde{M}$ admits extended screen homothetic and statical half lightlike submanifolds M such that the curvature vector field of $\tilde{M}$ is tangent to M.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.1003-1022
    • /
    • 2017
  • The object of study in this paper is generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection. We study the geometry of two types of generic light-like submanifolds, which are called recurrent and Lie recurrent generic lightlike submanifolds, of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection.

NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS WITH SEMI-SYMMETRIC NON-METRIC CONNECTIONS

  • Jin, Dae Ho
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.311-323
    • /
    • 2014
  • In this paper, we construct two types of non-tangential half lightlike submanifolds of a semi-Riemannian manifold admitting a semi-symmetric non-metric connection. Our main result is to prove several characterization theorems for each types of such half lightlike submanifolds equipped with totally geodesic screen distributions.

NON-EXISTENCE FOR SCREEN QUASI-CONFORMAL IRROTATIONAL HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM ADMITTING A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.337-344
    • /
    • 2015
  • We study screen quasi-conformal irrotational half lightlike submanifolds M of a semi-Riemannian space form $\bar{M}$ (c) equipped with a semi-symmetric non-metric connection subject such that the structure vector field of $\bar{M}$ (c) belongs to the screen distribution S(TM). The main result is a non-existence theorem for such half lightlike submanifolds.

SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.371-383
    • /
    • 2014
  • We study the geometry of lightlike submanifolds of a semi-Riemannian manifold. The purpose of this paper is to prove two singular theorems for irrotational lightlike submanifolds M of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that the structure vector field of $\bar{M}(c)$ is tangent to M.